Skip to content

dataloader

zeus.run.dataloader

Defines the ZeusDataLoader class.

ZeusDataLoader

Bases: DataLoader

Profiles and optimizes GPU power limit.

ZeusDataLoader is integrated into the DNN training script, and transparently profiles power and time consumption to determine the optimal GPU power limit.

Integration examples

Single-GPU
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
from zeus.run import ZeusDataLoader

# The one instantiated with max_epochs becomes the train dataloader
train_loader = ZeusDataLoader(train_set, batch_size=256, max_epochs=100)
eval_loader = ZeusDataLoader(eval_set, batch_size=256)

for epoch_number in train_loader.epochs():
    for batch in train_loader:
        # Learn from batch
    for batch in eval_loader:
        # Evaluate on batch

    train_loader.report_metric(validation_metric)
Data parallel with multi-GPU on a single-node

Important

Zeus assumes that exactly one process manages one GPU, and hence one instance of ZeusDataLoader exists for each GPU.

Users can integrate Zeus into existing data parallel training scripts with five specific steps, which are noted below in the comments.

Please refer to our integration example with ImageNet for a complete example.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch
import torch.distributed as dist
import torchvision

from zeus.run import ZeusDataLoader

# Step 1: Initialize the default process group.
# This should be done before instantiating `ZeusDataLoader`.
dist.init_process_group(
    backend=args.dist_backend,
    init_method=args.dist_url,
)

# Step 2: Create a model and wrap it with `DistributedDataParallel`.
model = torchvision.models.resnet18()
torch.cuda.set_device(local_rank)
model.cuda(local_rank)
# Zeus assumes that exactly one process manages one GPU. If you are doing data
# parallel training, please use `DistributedDataParallel` for model replication
# and specify the `device_ids` and `output_device` as below:
model = torch.nn.parallel.DistributedDataParallel(
    model,
    device_ids=[local_rank],
    output_device=local_rank,
)

# Step 3: Create instances of `DistributedSampler` to partition the dataset
# across the GPUs.
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
eval_sampler = torch.utils.data.distributed.DistributedSampler(eval_set)

# Step 4: Instantiate `ZeusDataLoader`.
# `distributed="dp"` tells `ZeusDataLoader` to operate in data parallel mode.
# The one instantiated with `max_epochs` becomes the train dataloader.
train_loader = ZeusDataLoader(train_set, batch_size=256, max_epochs=100,
                              sampler=train_sampler, distributed="dp")
eval_loader = ZeusDataLoader(eval_set, batch_size=256, sampler=eval_sampler,
                             distributed="dp")

# Step 5: Training loop.
# Use the train dataloader's `epochs` generator to allow Zeus to early-stop
# based on the cost. Use `report_metric` to let Zeus know the current
# validation metric.
for epoch_number in train_loader.epochs():
    for batch in train_loader:
        # Learn from batch
    for batch in eval_loader:
        # Evaluate on batch

    # Make sure you all-reduce the validation metric across all GPUs,
    # since Zeus expects the final validation metric.
    val_metric_tensor = torch.tensor([validation_metric], device="cuda")
    dist.all_reduce(val_metric_tensor, async_op=False)
    train_loader.report_metric(val_metric_tensor.item())

Environment variables

ZeusDataLoader interfaces with the outside world via environment variables. Thus, while ZeusDataLoader is paired together with ZeusMaster in example scripts, any other "driver" can use ZeusDataLoader as long as it sets appropriate environment variables.

  • ZEUS_TARGET_METRIC : Required. Zeus will stop training when this target validation metric is reached. Will be cast to float.
  • ZEUS_LOG_DIR : Directory to store profiling logs. (Default:"zeus_log")
  • ZEUS_JOB_ID : String to prefix in logs. (Default:"zeus")
  • ZEUS_COST_THRESH : Stop training when the energy-time cost will exceed this threshold. (Default:"inf")
  • ZEUS_ETA_KNOB : \(\eta\) knob to tradeoff between energy and time. Larger values reduce more energy and sacrifice time. (Default:"0.5")
  • ZEUS_MONITOR_PATH : Path to the Zeus power monitor binary. (Default:"zeus_monitor")
  • ZEUS_PROFILE_PARAMS: Warmup and measure iterations for each power limit, separated by a comma. (Default:"10,40")
  • ZEUS_USE_OPTIMAL_PL: Whether to actually use the optimal power limit found. Setting this to false is the Observer Mode described in Section 5. (Default:"True")
Source code in zeus/run/dataloader.py
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
class ZeusDataLoader(DataLoader):
    r"""Profiles and optimizes GPU power limit.

    `ZeusDataLoader` is integrated into the DNN training script, and transparently
    profiles power and time consumption to determine the optimal GPU power limit.

    # Integration examples

    ## Single-GPU

    ```python
    from zeus.run import ZeusDataLoader

    # The one instantiated with max_epochs becomes the train dataloader
    train_loader = ZeusDataLoader(train_set, batch_size=256, max_epochs=100)
    eval_loader = ZeusDataLoader(eval_set, batch_size=256)

    for epoch_number in train_loader.epochs():
        for batch in train_loader:
            # Learn from batch
        for batch in eval_loader:
            # Evaluate on batch

        train_loader.report_metric(validation_metric)
    ```

    ## Data parallel with multi-GPU on a single-node

    !!! Important
        Zeus assumes that exactly one process manages one GPU, and hence
        one instance of [`ZeusDataLoader`][zeus.run.ZeusDataLoader] exists
        for each GPU.

    Users can integrate Zeus into existing data parallel training scripts
    with five specific steps, which are noted below in the comments.

    Please refer to
    [our integration example with ImageNet](https://github.com/ml-energy/zeus/tree/master/examples/imagenet/train.py)
    for a complete example.

    ```python
    import torch
    import torch.distributed as dist
    import torchvision

    from zeus.run import ZeusDataLoader

    # Step 1: Initialize the default process group.
    # This should be done before instantiating `ZeusDataLoader`.
    dist.init_process_group(
        backend=args.dist_backend,
        init_method=args.dist_url,
    )

    # Step 2: Create a model and wrap it with `DistributedDataParallel`.
    model = torchvision.models.resnet18()
    torch.cuda.set_device(local_rank)
    model.cuda(local_rank)
    # Zeus assumes that exactly one process manages one GPU. If you are doing data
    # parallel training, please use `DistributedDataParallel` for model replication
    # and specify the `device_ids` and `output_device` as below:
    model = torch.nn.parallel.DistributedDataParallel(
        model,
        device_ids=[local_rank],
        output_device=local_rank,
    )

    # Step 3: Create instances of `DistributedSampler` to partition the dataset
    # across the GPUs.
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
    eval_sampler = torch.utils.data.distributed.DistributedSampler(eval_set)

    # Step 4: Instantiate `ZeusDataLoader`.
    # `distributed="dp"` tells `ZeusDataLoader` to operate in data parallel mode.
    # The one instantiated with `max_epochs` becomes the train dataloader.
    train_loader = ZeusDataLoader(train_set, batch_size=256, max_epochs=100,
                                  sampler=train_sampler, distributed="dp")
    eval_loader = ZeusDataLoader(eval_set, batch_size=256, sampler=eval_sampler,
                                 distributed="dp")

    # Step 5: Training loop.
    # Use the train dataloader's `epochs` generator to allow Zeus to early-stop
    # based on the cost. Use `report_metric` to let Zeus know the current
    # validation metric.
    for epoch_number in train_loader.epochs():
        for batch in train_loader:
            # Learn from batch
        for batch in eval_loader:
            # Evaluate on batch

        # Make sure you all-reduce the validation metric across all GPUs,
        # since Zeus expects the final validation metric.
        val_metric_tensor = torch.tensor([validation_metric], device="cuda")
        dist.all_reduce(val_metric_tensor, async_op=False)
        train_loader.report_metric(val_metric_tensor.item())
    ```

    # Environment variables

    `ZeusDataLoader` interfaces with the outside world via environment variables.
    Thus, while `ZeusDataLoader` is paired together with
    [`ZeusMaster`][zeus.run.ZeusMaster] in example scripts, any other "driver" can
    use `ZeusDataLoader` as long as it sets appropriate environment variables.

      - `ZEUS_TARGET_METRIC` : Required. Zeus will stop training when this target
                               validation metric is reached. Will be cast to float.
      - `ZEUS_LOG_DIR`       : Directory to store profiling logs. (Default:` "zeus_log"`)
      - `ZEUS_JOB_ID`        : String to prefix in logs. (Default:` "zeus"`)
      - `ZEUS_COST_THRESH`   : Stop training when the energy-time cost will exceed
                               this threshold.  (Default:` "inf"`)
      - `ZEUS_ETA_KNOB`      : $\eta$ knob to tradeoff between energy and time.
                               Larger values reduce more energy and sacrifice time.
                               (Default:` "0.5"`)
      - `ZEUS_MONITOR_PATH`  : Path to the Zeus power monitor binary.
                               (Default:` "zeus_monitor"`)
      - `ZEUS_PROFILE_PARAMS`: Warmup and measure iterations for each power limit,
                               separated by a comma. (Default:` "10,40"`)
      - `ZEUS_USE_OPTIMAL_PL`: Whether to actually use the optimal power limit found.
                               Setting this to false is the Observer Mode described
                               in Section 5. (Default:` "True"`)
    """

    # The power limit currently set for the GPU.
    current_gpu_pl: ClassVar[int] = 0

    # Train batch size to be accessed by the eval dataloader.
    train_batch_size: ClassVar[int] = 0

    # Length of the eval dataloader. `epochs` in the train dataloader needs this.
    eval_num_samples: ClassVar[int] = 0

    # Train-time power profiling result. Maps power limit to avg_power & throughput.
    train_power_result: ClassVar[dict[int, float]] = {}
    train_tput_result: ClassVar[dict[int, float]] = {}

    # Eval-time power profiling result. Maps power limit to avg_power & throughput.
    eval_power_result: ClassVar[dict[int, float]] = {}
    eval_tput_result: ClassVar[dict[int, float]] = {}

    # Cost-optimal power limit. Set by the train dataloader after the last power limit
    # was explored.
    optimal_pl: ClassVar[int] = 0

    # Train epoch measurements for time/energy accounting.
    train_epoch_time: ClassVar[list[float]] = []
    # The master process will record ALL GPUs' energy consumption during training.
    # GPU_i's energy records is `train_epoch_energy[i]`.
    train_epoch_energy: ClassVar[np.ndarray] = np.empty(0)

    # Eval-time latency profiling result. Maps power limit to epoch latency.
    eval_epoch_time: ClassVar[list[float]] = []
    # The master process will record ALL GPUs' energy consumption during evaluation.
    # GPU_i's energy records is `eval_epoch_energy[i]`.
    eval_epoch_energy: ClassVar[np.ndarray] = np.empty(0)

    # Zeus monitor instance
    zeus_monitor: ClassVar[ZeusMonitor | None] = None

    # ruff: noqa: PLR0912, PLR0915
    def __init__(
        self,
        *args,
        batch_size: int,
        max_epochs: int = -1,
        distributed: Literal["dp"] | None = None,
        **kwargs,
    ) -> None:
        """Initialize the dataloader.

        Args:
            batch_size: Batch size to use for training.
            max_epochs: Maximum number of epochs to train. **Specify this parameter only
                to the train data loader.** (Default: `-1`)
            distributed: Distributed strategy to use for training. If training with single GPU,
                this value should be `None`; if training using data parallel with multi-GPU on
                a single node, this value should be `"dp"`. (Default: `None`)
            *args: Arguments to pass to `torch.utils.data.DataLoader`.
            **kwargs: Keyword arguments to pass to `torch.utils.data.DataLoader`.

        Raises:
            ValueError: `max_epochs` is specified when initializing the evaluation dataloader.
            RuntimeError: `torch.distributed` package is not available.
            RuntimeError: The default process group is not initialized. Make sure to call
                `torch.distributed.init_process_group` to initialize the default process
                group before doing a multiprocessing distributed training.
            ValueError: `self.sampler` is not an instance of `DistributedSampler`. An instance of
                `DistributedSampler` will shuffle and distribute data among GPUs, so it is required
                for data parallel training.
            ValueError: `DistributedSampler` passed in `self.sampler` is inconsistent with the default
                process group. Currently, we assume that all the GPUs in the node will be used for
                training. In this case, the instance of `DistributedSampler` should have
                `sampler.num_replicas == torch.distributed.get_world_size()`
                and `sampler.rank == torch.distributed.get_rank()`.
            TypeError: Parameter `distributed` is not correctly specified. Currently, it can only
                be set as `"dp"` or `None`.
            RuntimeError: Scaling is triggered when the profile window exceeds the number of iterations
                in one epoch. But latter is too small, so scaling can not produce a valid profile window.
                Please consider increasing batch size.
        """
        # Save attributes.
        self.batch_size = batch_size
        self.split = "train" if max_epochs != -1 else "eval"
        self.max_epochs = max_epochs
        self.log_prefix = f"[ZeusDataLoader({self.split})]"
        self.logger = get_logger(self.log_prefix)

        # Initialize the DataLoader.
        super().__init__(*args, batch_size=batch_size, **kwargs)

        # World size and rank for distributed training.
        # Set default value for single-GPU.
        self.world_size = 1
        self.rank = 0
        # Check whether we are doing a distributed training.
        # Pass in world size and rank.

        self.distributed = distributed

        if self.distributed == "dp":
            # Check if the distributed package is available.
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available.")
            # Check if the process group is initialized.
            if not dist.is_initialized():
                raise RuntimeError(
                    "Default process group has not been initialized,"
                    " please make sure to call `init_process_group`"
                    " before you instantiate `ZeusDataLoader`."
                )
            # Check if `self.sampler` is an instance of DistributedSampler.
            if not isinstance(getattr(self, "sampler", None), DistributedSampler):
                raise ValueError(
                    "Sampler is not an instance of `DistributedSampler`."
                    " Data parallel training on multi-GPU requires a `DistributedSampler`."
                )
            # Check the consistency between the sampler and process group.
            if (
                self.sampler.num_replicas != dist.get_world_size()
                or self.sampler.rank != dist.get_rank()
            ):
                raise ValueError(
                    "`DistributedSampler` is inconsistent with the default process group."
                    f" The default process group has `world_size={dist.get_world_size()}`,"
                    f" `rank={dist.get_rank()}`."
                )
            self.world_size = dist.get_world_size()
            self.rank = dist.get_rank()
        elif self.distributed is not None:
            raise ValueError('`distributed` currently only accepts `"dp"` or `None`.')

        if self._is_train:
            self._log(
                f"Distributed data parallel: {'ON' if self.world_size > 1 else 'OFF'}"
            )

        if self._is_train:
            if ZeusDataLoader.train_batch_size != 0:
                # If max_epochs is specified when initializing a eval dataloader,
                # it will mistaken itself as a train dataloader.
                # In this case, raise a ValueError.
                raise ValueError("Specify max_epochs only to the train dataloader.")
            # In data parallel training, each DataLoader gets `batch_size=global_batch_size/num_gpus`.
            # So, we scale the `train_batch_size` for the consistency with ZeusMaster.
            # NOTE: Zeus assume `global_batch_size == batch_size * num_gpus`. So please ensure that
            # `global_batch_size` is divisible by `num_gpu` in the training script.
            ZeusDataLoader.train_batch_size = self.batch_size * self.world_size

        # Retrieve environment variables from ZeusMaster.
        self.target_metric = get_env("ZEUS_TARGET_METRIC", float)
        self.logdir = get_env("ZEUS_LOG_DIR", str, default="zeus_log")
        self.job_id = get_env("ZEUS_JOB_ID", str, default="zeus")
        self.cost_thresh = get_env("ZEUS_COST_THRESH", float, default=float("inf"))
        self.eta_knob = get_env("ZEUS_ETA_KNOB", float, default=0.5)
        self.monitor_path = get_env(
            "ZEUS_MONITOR_PATH",
            str,
            default="zeus_monitor",
        )
        self.warmup_iter, self.profile_iter = map(
            int, get_env("ZEUS_PROFILE_PARAMS", str, default="10,40").split(",")
        )
        self.use_optimal_pl = get_env("ZEUS_USE_OPTIMAL_PL", bool, default=True)

        # Create ZEUS_LOG_DIR if it does not exist.
        os.makedirs(self.logdir, exist_ok=True)

        # Whether the target metric was reached.
        self.target_metric_reached = False

        # Construct relevant paths.
        self.train_json = (
            f"{self.logdir}/{self.job_id}+bs{self.train_batch_size}.train.json"
        )
        self.power_json = f"{self.logdir}/bs{self.train_batch_size}.power.json"

        # Numbers related to the dataloader.
        # sample_num: the number of iterations processed in the current epoch.
        # num_samples: the total number of iterations in one epoch.
        self.epoch_num = 0
        self.sample_num = 0
        self.num_samples = len(self)

        # Pass the length of the eval dataloader for `epochs`.
        if not self._is_train:
            ZeusDataLoader.eval_num_samples = self.num_samples

        # If the number of iterations in one epoch (`num_samples`) is smaller than or equal
        # to one profile window (`warmup_iters + profile_iters`), we will not be able to
        # profile for any power limit. So, we scale the profile window to fit in one epoch.
        # We also avoid using the last batch of one epoch, becasue when `drop_last == True`,
        # the last batch will be smaller. This usually happens with large batch size on
        # small datasets, eg. CIFAR100.
        if self._is_train and self.warmup_iter + self.profile_iter >= self.num_samples:
            self._log(
                f"The profile window takes {self.warmup_iter + self.profile_iter}"
                f" iterations ({self.warmup_iter} for warmup + {self.profile_iter}"
                f" for profile) and exceeds the number of iterations ({self.num_samples})"
                f" in one epoch. Scaling the profile window to fit in one epoch..."
            )
            scaling_factor = (self.num_samples - 1) / (
                self.warmup_iter + self.profile_iter
            )
            self.warmup_iter = int(self.warmup_iter * scaling_factor)
            self.profile_iter = int(self.profile_iter * scaling_factor)
            if self.warmup_iter == 0 or self.profile_iter == 0:
                raise RuntimeError(
                    f"Number of iterations in one epoch is {self.num_samples} and"
                    " is too small for applying the scaling. Please consider using"
                    " a smaller batch size. If you are running `run_zeus.py`, please"
                    " pass a smaller value to `--b_max`."
                )
            self._log(
                f"Scaling done! New profile window takes {self.warmup_iter + self.profile_iter}"
                f" iterations ({self.warmup_iter} for warmup + {self.profile_iter} for profile)."
            )

        # Power profiling windows
        # We're interested in the average power and throughput here.
        #
        # +----- warmup_start (change power limit)
        # |        +----- prof_start (`_prof_window_push`)
        # |        |                      +----- prof_end (`_prof_window_pop`)
        # | warmup |        profile       |
        # v  iter  v          iter        v
        # ================================= =====================
        # |      power limit = 250W       | | power limit = 225W  ...
        # ================================= =====================
        #
        # =======================================================
        # |                         Epoch 1                       ...
        # =======================================================
        # ^
        # |
        # +------- Time/energy accounting for the entire training job (`_prof_window_push`)
        #
        # Initialize variables for profiling
        self.warmup_start_sample = 0
        self.prof_start_sample = 0
        self.prof_state = NOT_PROFILING
        self.prof_pl_index = 0

        # Initialize data structure for storing the energy accounting
        # based on the number of GPUs.
        if self._is_train:
            # Sanity check
            assert self.world_size > 0, f"{self.world_size=}"
            assert self.max_epochs > 0, f"{self.max_epochs=}"
            ZeusDataLoader.train_epoch_energy = np.zeros(
                shape=(self.world_size, self.max_epochs), dtype=np.float64
            )
            ZeusDataLoader.eval_epoch_energy = np.zeros(
                shape=(self.world_size, self.max_epochs), dtype=np.float64
            )

        gpus = get_gpus(ensure_homogeneous=True)
        for index in range(self.world_size):
            # Set persistent mode.
            # TODO(JW): Check SYS_ADMIN permissions and error with an explanation.
            gpus.setPersistenceMode(index, enable=True)

        # Query NVML for the possible power limit range. Unit is mW.
        min_pl, self.max_pl = gpus.getPowerManagementLimitConstraints(0)
        self.power_limits = list(range(self.max_pl, min_pl - 25_000, -25_000))
        if self._is_train:
            self._log(f"Power limit range: {self.power_limits}")

        # Check whether profiling is ON or OFF. If OFF, load the power limit
        # from power_json, and set power limit for all GPUs at the master process.
        if self._is_train and self.rank == 0:
            should_profile = self._should_profile
            self._log(f"Power profiling: {'ON' if should_profile else 'OFF'}")
            # Initialize profiling service
            ZeusDataLoader.zeus_monitor = ZeusMonitor(
                list(range(self.world_size)),
                self.monitor_path,
            )

            # If we need to do profiling, no need to touch the power limit.
            # If profiling is already done, load profile information from power_json.
            # Only then do we have the optimal PL available.
            # We only load in the train dataloader since it populates classvars.
            if not should_profile:
                self._load_power_results()
                self._set_gpu_steady_power_limit()

    def epochs(self) -> Generator[int, None, None]:
        """Yield the current epoch number from 0 until when training should stop.

        Training should stop when

        - the cost reached the cost threshold, or
        - the maximum number of epochs was reached, or
        - the target metric was reached.

        When done, stores the job results in `train_json`.

        Yields:
            Epoch indices starting from zero.

        Raises:
            ZeusCostThresholdExceededException: the predicted cost after the next
                epoch exceeds the cost threshold. When doing data parallel training,
                this exception is used for ternimating all the processes.
        """
        # Sanity check.
        if not self._is_train:
            raise RuntimeError("Use epochs() on the train dataloader.")

        while True:
            # Variables for storing time/energy consumption & cost
            time_consumed, energy_consumed = -1, -1
            cost = -1
            if self.rank == 0:
                # Sanity checks.
                enum = self.epoch_num
                assert (
                    len(self.train_epoch_time) == enum
                ), f"{len(self.train_epoch_time)=}"
                assert (
                    len(self.eval_epoch_time) == enum
                ), f"{len(self.eval_epoch_time)=}"

                # Compute time and energy consumption up to now.
                # Compute time consumption at GPU_0
                time_consumed = sum(self.train_epoch_time + self.eval_epoch_time)
                # Compute energy consumption over all the GPUs
                energy_consumed = (
                    self.train_epoch_energy.sum() + self.eval_epoch_energy.sum()
                )
                cost = zeus_cost(
                    energy_consumed,
                    time_consumed,
                    self.eta_knob,
                    self.max_pl // 1000 * self.world_size,
                )
                self._log(
                    f"Up to epoch {self.epoch_num}: "
                    f"time={time_consumed:.2f}, energy={energy_consumed:.2f}, cost={cost:.2f}"
                )

            # target_metric_reached is set when the current validation metric is reported to
            # the train dataloader after the end of each epoch.
            # Stop if the target metric was reached.
            if self.target_metric_reached:
                if self.rank == 0:
                    # Sanity check that time/energy consumption & cost are valid in master process.
                    assert time_consumed >= 0 and energy_consumed >= 0 and cost >= 0
                    self._log(
                        f"Target metric {self.target_metric} was reached! Stopping."
                    )
                    self._save_train_results(energy_consumed, time_consumed, cost, True)
                return

            # Max epoch is a hard stop.
            if self.epoch_num >= self.max_epochs:
                if self.rank == 0:
                    # Sanity check that time/energy consumption & cost are valid in master process.
                    assert time_consumed >= 0 and energy_consumed >= 0 and cost >= 0
                    self._log(
                        f"Maximum number of epochs {self.max_epochs} reached. Stopping."
                    )
                    self._save_train_results(
                        energy_consumed, time_consumed, cost, False
                    )
                return

            # No need to do anything in the first epoch.
            if self.epoch_num == 0:
                yield 0
                continue

            # Just continue if we're profiling.
            # This will ignore and continue training even if the cost threshold was exceeded.
            # However, the profiling cost actually exceeding the cost threshold would not
            # happen frequently. It's more like a wrong cost threshold.
            if self._should_profile:
                if cost >= self.cost_thresh:
                    self._log(
                        f"{cost=:.2f} exceeded threshold {self.cost_thresh:.2f} at GPU_{self.rank}, "
                        "but just continue since we're profiling."
                    )
                yield self.epoch_num
                continue

            if self.rank == 0:
                # Sanity check that time/energy consumption & cost are valid in master process.
                assert time_consumed >= 0 and energy_consumed >= 0 and cost >= 0

                # We want to predict whether running the next epoch will exceed the cost threshold.
                next_train_time = (
                    self.num_samples / self.train_tput_result[self.optimal_pl]
                )
                next_eval_time = (
                    self.eval_num_samples / self.eval_tput_result[self.optimal_pl]
                )
                next_time = next_train_time + next_eval_time
                next_train_energy = (
                    next_train_time * self.train_power_result[self.optimal_pl]
                )
                next_eval_energy = (
                    next_eval_time * self.eval_power_result[self.optimal_pl]
                )
                next_energy = next_train_energy + next_eval_energy
                self._log(
                    f"Optimal PL train & eval expected time={next_time:.2f} energy={next_energy:.2f}"
                )
                next_time_consumed = time_consumed + next_time
                next_energy_consumed = energy_consumed + next_energy
                next_cost = zeus_cost(
                    next_energy_consumed,
                    next_time_consumed,
                    self.eta_knob,
                    self.max_pl // 1000 * self.world_size,
                )
                self._log(
                    f"Expected next epoch: time={next_time_consumed:.2f}, "
                    f"energy={next_energy_consumed:.2f}, "
                    f"cost={next_cost:.2f}"
                )

                # Stop if the predicted cost of the next epoch exceeds the cost threshold.
                if next_cost >= self.cost_thresh:
                    # Save training results
                    self._save_train_results(
                        energy_consumed, time_consumed, cost, False
                    )
                    # NOTE: We use a customized exception to terminate ALL the processes for
                    # the purpose of multiprocessing management.
                    # When doing data parallel training on multiple processes, ONLY the master
                    # process will predict `next_cost` and do the threshold checking. However,
                    # once the predicted cost exceeds the threshold, we want to terminate ALL
                    # the processes. Currently this is achieved by throwing an exception at the
                    # master process. The lauching script will terminate all the processes that
                    # are still alive.
                    raise ZeusCostThresholdExceededError(
                        time_consumed,
                        energy_consumed,
                        cost,
                        next_cost,
                        self.cost_thresh,
                    )

            yield self.epoch_num

    def report_metric(self, metric: float, higher_is_better: bool) -> None:
        """Report the validation metric to the train dataloader.

        If doing data parallel training, please make sure
        to call `dist.all_reduce()` to reduce the validation metric across all GPUs
        before calling `train_loader.report_metric()`.

        Args:
            metric: The validation metric of the current epoch.
            higher_is_better: For example, this should be `True` for accuracy
                and `False` for error.
        """
        assert self._is_train, "Use report_metric on the train dataloader."
        # ruff: noqa: PLR5501
        if higher_is_better:
            if metric >= self.target_metric:
                self.target_metric_reached = True
        else:
            if metric <= self.target_metric:
                self.target_metric_reached = True

    @property
    def _should_profile(self) -> bool:
        """Whether profiling is not done."""
        return not Path(self.power_json).exists()

    @property
    def _power_limits_left(self) -> bool:
        """Whether there are power limits left to profile."""
        return self.prof_pl_index < len(self.power_limits)

    def _compute_optimal_pl(self) -> int:
        """Return the cost-optimal power limit."""
        # Sanity checks.
        assert ZeusDataLoader.train_tput_result
        assert ZeusDataLoader.train_power_result
        # Only compute optimal PL at master process.
        assert self.rank == 0

        # Compute power cost
        tput = ZeusDataLoader.train_tput_result
        power = ZeusDataLoader.train_power_result
        cost_map = {
            pl: (
                self.eta_knob * power[pl]
                + (1 - self.eta_knob) * self.max_pl * self.world_size
            )
            / tput[pl]
            for pl in self.power_limits
        }
        optimal_pl = min(cost_map.keys(), key=cost_map.get)  # type: ignore
        self._log(f"Cost-optimal power limit is {optimal_pl//1000}W")
        return optimal_pl

    def _set_gpu_power_limit(self, power_limit: int) -> None:
        """Set the GPU's power limit using NVML.

        This method only invokes NVML when `power_limit` is not the same as
        the current GPU power limit.

        Args:
            power_limit: Power limit to set.
        """
        # Sanity check.
        # Only set power limit at master process.
        gpus = get_gpus()
        assert self.rank == 0
        assert len(gpus) == self.world_size

        # Set power limit for all GPUs.
        if self.current_gpu_pl != power_limit:
            for index in range(self.world_size):
                gpus.setPowerManagementLimit(index, power_limit)
                self._log(f"[GPU_{index}] Set GPU power limit to {power_limit//1000}W.")
            ZeusDataLoader.current_gpu_pl = power_limit

    def _set_gpu_steady_power_limit(self) -> None:
        """Set the steady power limit based on self.use_optimal_pl."""
        # Sanity check.
        # Only set power limit at master process.
        assert self.rank == 0

        power_limit = ZeusDataLoader.optimal_pl if self.use_optimal_pl else self.max_pl
        self._log(
            "Steady state power limit: "
            f"{'OPT' if self.use_optimal_pl else 'MAX'} {power_limit//1000}W"
        )
        self._set_gpu_power_limit(power_limit)

    def _log(
        self, message: str, level: int = logging.INFO, master_only: bool = True
    ) -> None:
        """Print out message with prefix.

        Args:
            message: The message to log out.
            level: The logging level to use. (Default: `logging.INFO`)
            master_only: Whether only logged by master process. Usually set to True for the
                global logging and False for the GPU-specific logging . If set to False,
                a prefix indicates which GPU this log comes from will be included as well.
                (Default: `True`)
        """
        if master_only:
            if self.rank == 0:
                self.logger.log(level, "%s", message)
        else:
            gpu_log_prefix = f"[GPU_{self.rank}]"
            self.logger.log(level, "%s %s", gpu_log_prefix, message)

    @cached_property
    def _is_train(self) -> bool:
        """Return whether this dataloader is for training."""
        return self.split == "train"

    @property
    def _monitor_log_prefix(self) -> str:
        """Build the prefix for the power monitor log file."""
        return f"bs{self.train_batch_size}+e{self.epoch_num}"

    @property
    def _monitor(self) -> ZeusMonitor:
        """Return the `ZeusMonitor` instance."""
        assert (
            ZeusDataLoader.zeus_monitor is not None
        ), "ZeusDataLoader.zeus_monitor was not instantiated"
        return ZeusDataLoader.zeus_monitor

    def _begin_measurement(self, name: str) -> None:
        """A wrapper function that starts a measurement window."""
        assert self.rank == 0
        self._monitor.begin_window(name, sync_cuda=True)

    def _end_measurement(self, name: str) -> Measurement:
        """A wrapper function that ends a measurement window and returns measurements."""
        assert self.rank == 0
        return self._monitor.end_window(name, sync_cuda=True)

    def _start_warmup(self) -> None:
        """Let the GPU run for some time with the poewr limit to profile."""
        # Sanity checks.
        assert self._should_profile, f"start_warmup: {self._should_profile=}"
        assert self._is_train, f"start_warmup: {self._is_train=}"
        assert self._power_limits_left, f"start_warmup: {self._power_limits_left=}"
        # Sanity check that this profile window ends before the end of the current epoch.
        assert (
            self.sample_num + self.warmup_iter + self.profile_iter < self.num_samples
        ), (
            "start_warmup: "
            f"end_of_this_profile_window {self.sample_num + self.warmup_iter + self.profile_iter} "
            f"< end_of_this_epoch {self.num_samples}"
        )

        # Call cudaSynchronize to make sure this is the iteration boundary.
        torch.cuda.synchronize()

        # Change power limit.
        if self.rank == 0:
            power_limit = self.power_limits[self.prof_pl_index]
            self._set_gpu_power_limit(power_limit)

            self._log(f"Warm-up started with power limit {self.current_gpu_pl//1000}W")

        self.warmup_start_sample = self.sample_num

        # Set profiling state.
        self.prof_state = WARMING_UP

    def _start_prof(self) -> None:
        """Start profiling power consumption for the current power limit."""
        # Sanity checks.
        assert self._should_profile, f"start_prof: {self._should_profile=}"
        assert self._is_train, f"start_prof: {self._is_train=}"
        assert self._power_limits_left, f"start_prof: {self._power_limits_left=}"
        # Sanity check that this profile window ends before the end of the current epoch.
        assert self.sample_num + self.profile_iter < self.num_samples, (
            "start_prof: "
            f"end_of_this_profile_window {self.sample_num + self.profile_iter} "
            f"< end_of_this_epoch {self.num_samples}"
        )

        if self.rank == 0:
            # Push profiling window for the current power limit value.
            # This window will profile for `self.profile_iter` iterations.
            self._begin_measurement(
                f"__ZeusDataLoader_power_limit_{self.current_gpu_pl//1000}"
            )

        # Set the sample number when we started profiling.
        self.prof_start_sample = self.sample_num

        # Set profiling state.
        self.prof_state = PROFILING

        self._log(f"Profile started with power limit {self.current_gpu_pl//1000}W")

    def _end_prof(self) -> None:
        """End profiling power consumption for this power limit.

        Raises:
            ValueError: ValueError raised by sklearn.metrics.auc in analyze.avg_power,
                might due to profile window too small. In this case, user should consider
                increasing profile window.
        """
        # Sanity checks.
        assert self._should_profile, f"end_prof: {self._should_profile=}"
        assert self._is_train, f"end_prof: {self._is_train=}"
        assert self._power_limits_left, f"end_prof: {self._power_limits_left=}"
        # Sanity check that this profile window ends before the end of the current epoch.
        assert self.sample_num < self.num_samples, (
            "end_prof: "
            f"end_of_this_profile_window {self.sample_num} "
            f"< end_of_this_epoch {self.num_samples}"
        )

        # Set profiling state.
        self.prof_state = NOT_PROFILING

        # Call cudaSynchronize to make sure this is the iteration boundary.
        torch.cuda.synchronize()

        # Advance to the next power limit. Affects self.power_limits_left.
        self.prof_pl_index += 1

        if self.rank == 0:
            # Pop profiling window for the current power limit and fetch profiling results.
            profiling_result = self._end_measurement(
                f"__ZeusDataLoader_power_limit_{self.current_gpu_pl//1000}"
            )
            time_consumed, energy_consumed = (
                profiling_result.time,
                profiling_result.energy,
            )
            # Summing up the average power on all GPUs.
            sum_avg_power = sum(energy_consumed.values()) / time_consumed
            self.train_power_result[self.current_gpu_pl] = sum_avg_power

            # Compute and save throughput. We use the time at the master process.
            samples_processed = self.sample_num - self.prof_start_sample
            throughput = samples_processed / time_consumed
            self.train_tput_result[self.current_gpu_pl] = throughput

            self._log(f"Profile done with power limit {self.current_gpu_pl//1000}W")

            # If we're done with all power limits, compute the optimal power limit
            # and change to that power limit for the rest of the epoch.
            # This will lead to the eval epoch being run with the optimal power limit,
            # and since self.should_profile is still True, tput/power will be profiled.
            # Profiling the optimal power limit on eval set will help us better predict
            # the time and energy consumed in the next eval epoch, to help us decide
            # whether running next epoch will exceed the cost threshold.
            if not self._power_limits_left:
                self._log("This was the last power limit to explore.")
                ZeusDataLoader.optimal_pl = self._compute_optimal_pl()
                self._set_gpu_power_limit(ZeusDataLoader.optimal_pl)

    def _save_power_results(self) -> None:
        """Write the power profiling results to `power_json`."""
        # Sanity check.
        # Only save power results at master process.
        assert self.rank == 0

        prof_result = dict(
            job_id=self.job_id,  # Not used. Just for the purpose of record.
            train_power=self.train_power_result,
            train_throughput=self.train_tput_result,
            eval_power=self.eval_power_result,
            eval_throughput=self.eval_tput_result,
            optimal_pl=self.optimal_pl,
        )
        # NOTE: Write-then-move needed if we're handling concurrent jobs.
        with open(self.power_json, "w") as f:
            json.dump(prof_result, f)
        with open(self.power_json, "r") as f:
            self._log("Power profiling done.")
            self._log(f"Saved {self.power_json}: {f.read()}")

    def _load_power_results(self) -> None:
        """Load power profiling information into the class from `power_json`."""
        # Sanity check.
        # Only load power results at master process.
        assert self.rank == 0

        # Helper function that casts the keys of a dictionary to integer.
        def as_int_key(dictionary: dict[str, float]) -> dict[int, float]:
            result = {}
            for key, value in dictionary.items():
                result[int(key)] = value
            return result

        with open(self.power_json, "r") as f:
            power_results = json.load(f)

        ZeusDataLoader.train_power_result = as_int_key(power_results["train_power"])
        ZeusDataLoader.train_tput_result = as_int_key(power_results["train_throughput"])
        ZeusDataLoader.eval_power_result = as_int_key(power_results["eval_power"])
        ZeusDataLoader.eval_tput_result = as_int_key(power_results["eval_throughput"])
        ZeusDataLoader.optimal_pl = power_results["optimal_pl"]

        self._log(f"Loaded {self.power_json}: {power_results}")

    def _save_train_results(
        self, energy: float, time_: float, cost: float, reached: bool
    ) -> None:
        """Write the job training results to `train_json`."""
        # Sanity check.
        # Only load power results at master process.
        assert self.rank == 0

        train_result = dict(
            energy=energy,
            time=time_,
            cost=cost,  # Not used. Just for reference.
            num_epochs=self.epoch_num,  # Not used. Just for reference.
            reached=reached,
        )
        with open(self.train_json, "w") as f:
            json.dump(train_result, f)
        with open(self.train_json, "r") as f:
            self._log("Training done.")
            self._log(f"Saved {self.train_json}: {f.read()}")

    def __iter__(self):
        """Signal the beginning of an epoch."""
        # Sanity check that there is no incomplete profile window at the beginning of epoch,
        # because we start profiling only if the entire profiling window can fit in the rest of
        # the training epoch.
        assert self.prof_state == NOT_PROFILING, f"__iter__: {self.prof_state=}"

        # Update counters.
        self.epoch_num += 1
        self.sample_num = 0
        self._log(f"Epoch {self.epoch_num} begin.")

        # Cache the dataloader iterator.
        self.iter = super().__iter__()

        if self.rank == 0:
            # Push profiling window for the current epoch.
            # Note that both train and eval dataloaders will push one profiling window *separately*.
            self._begin_measurement("__ZeusDataLoader_epoch")
            # The power limit of the GPU is only changed by the train dataloader (`self._is_train`).
            # If we're not profiling, use the steady state power limit (`self._should_profile`).
            # If we are profiling, the power limit will be set in __next__ with warmup.
            # Power limit result is already loaded in when initializing the train dataloader,
            # so we just set the power limit directly.
            if self._is_train and not self._should_profile:
                self._set_gpu_steady_power_limit()

        return self

    def __next__(self):
        """Signal the beginning of an iteration."""
        # Update counters.
        self.sample_num += 1

        # Try to fetch next batch.
        try:
            data = next(self.iter)
        except StopIteration:
            # End of this epoch.
            # Sanity check that there is no incomplete profile window at the end of epoch.
            assert self.prof_state == NOT_PROFILING, f"__next__: {self.prof_state=}"

            # Make sure all GPU operations are done so that now is the *actual* end of this epoch.
            torch.cuda.synchronize()

            # Compute epoch time and energy consumption.
            # We're interested in the actual time/energy consumption here.
            #
            #   ================================================================
            #   |                      Train                       ||   Eval   |
            #   ================================================================
            #   ^                                                  ^^          ^
            #   |                                                 / |          |
            #   _prof_window_push()              _prof_window_pop() |          |
            #   for train loader                   for train loader |          |
            #                                                       |          |
            #                                     _prof_window_push()   _prof_window_pop()
            #                                         for eval loader      for eval loader
            #
            if self.rank == 0:
                # Sanity check that `epoch_num` is within valid range
                assert self.epoch_num >= 1, f"__next__: {self.epoch_num=}"
                # Pop profiling window for the current epoch and fetch profiling result.
                profiling_result = self._end_measurement("__ZeusDataLoader_epoch")
                time_consumed, energy_consumed = (
                    profiling_result.time,
                    profiling_result.energy,
                )
                sum_energy_consumed = sum(energy_consumed.values())
                if self._is_train:
                    self.train_epoch_time.append(time_consumed)
                    # Record the energy consumption for each GPU.
                    for index in range(self.world_size):
                        self.train_epoch_energy[index][
                            self.epoch_num - 1
                        ] = energy_consumed[index]
                else:
                    # Integrate the last time_consumed seconds.
                    self.eval_epoch_time.append(time_consumed)
                    # Record the energy consumption for each GPU.
                    for index in range(self.world_size):
                        self.eval_epoch_energy[index][
                            self.epoch_num - 1
                        ] = energy_consumed[index]
                    # For the eval dataloader, we want to record the throughput and power
                    # for the current power limit. Since the train dataloader sets the power limit
                    # to the optimal power limit right after profiling is done, this will naturally
                    # record the tput/power of the optimal PL. From the following epochs where we
                    # don't profile anything, we directly use these values to compute the time and
                    # energy consumed.
                    if self._should_profile:
                        self.eval_tput_result[self.current_gpu_pl] = (
                            self.num_samples / time_consumed
                        )
                        self.eval_power_result[self.current_gpu_pl] = (
                            sum_energy_consumed / time_consumed
                        )
                        # The optimal PL being known means that all power limits have been explored.
                        # Let us end profiling by writing profile information to `power_json`.
                        if self.optimal_pl != 0:
                            self._save_power_results()
                self._log(
                    f"{self.split} epoch {self.epoch_num} done: "
                    f"time={time_consumed:.2f} energy={sum_energy_consumed:.2f}"
                )

            # Re-raise StopIteration.
            raise

        # We're in the middle of an epoch. The train loader has power limits left to profile.
        if self._is_train and self._should_profile and self._power_limits_left:
            # We weren't doing anything. Start warming up if the iterations left in
            # the current epoch can accommodate at least one profile window.
            if (
                self.prof_state == NOT_PROFILING
                and self.sample_num + self.warmup_iter + self.profile_iter
                < self.num_samples
            ):
                self._start_warmup()
            # We're done warming up. Start the actual profiling window.
            elif (
                self.prof_state == WARMING_UP
                and self.sample_num - self.warmup_start_sample == self.warmup_iter
            ):
                self._start_prof()
            # We're done profiling. Stop the profiling window and gather results.
            elif (
                self.prof_state == PROFILING
                and self.sample_num - self.prof_start_sample == self.profile_iter
            ):
                self._end_prof()

        return data

_should_profile property

1
_should_profile

Whether profiling is not done.

_power_limits_left property

1
_power_limits_left

Whether there are power limits left to profile.

_is_train cached property

1
_is_train

Return whether this dataloader is for training.

_monitor_log_prefix property

1
_monitor_log_prefix

Build the prefix for the power monitor log file.

_monitor property

1
_monitor

Return the ZeusMonitor instance.

__init__

1
2
3
4
5
6
7
__init__(
    *args,
    batch_size,
    max_epochs=-1,
    distributed=None,
    **kwargs
)

Parameters:

Name Type Description Default
batch_size int

Batch size to use for training.

required
max_epochs int

Maximum number of epochs to train. Specify this parameter only to the train data loader. (Default: -1)

-1
distributed Literal['dp'] | None

Distributed strategy to use for training. If training with single GPU, this value should be None; if training using data parallel with multi-GPU on a single node, this value should be "dp". (Default: None)

None
*args

Arguments to pass to torch.utils.data.DataLoader.

()
**kwargs

Keyword arguments to pass to torch.utils.data.DataLoader.

{}

Raises:

Type Description
ValueError

max_epochs is specified when initializing the evaluation dataloader.

RuntimeError

torch.distributed package is not available.

RuntimeError

The default process group is not initialized. Make sure to call torch.distributed.init_process_group to initialize the default process group before doing a multiprocessing distributed training.

ValueError

self.sampler is not an instance of DistributedSampler. An instance of DistributedSampler will shuffle and distribute data among GPUs, so it is required for data parallel training.

ValueError

DistributedSampler passed in self.sampler is inconsistent with the default process group. Currently, we assume that all the GPUs in the node will be used for training. In this case, the instance of DistributedSampler should have sampler.num_replicas == torch.distributed.get_world_size() and sampler.rank == torch.distributed.get_rank().

TypeError

Parameter distributed is not correctly specified. Currently, it can only be set as "dp" or None.

RuntimeError

Scaling is triggered when the profile window exceeds the number of iterations in one epoch. But latter is too small, so scaling can not produce a valid profile window. Please consider increasing batch size.

Source code in zeus/run/dataloader.py
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
def __init__(
    self,
    *args,
    batch_size: int,
    max_epochs: int = -1,
    distributed: Literal["dp"] | None = None,
    **kwargs,
) -> None:
    """Initialize the dataloader.

    Args:
        batch_size: Batch size to use for training.
        max_epochs: Maximum number of epochs to train. **Specify this parameter only
            to the train data loader.** (Default: `-1`)
        distributed: Distributed strategy to use for training. If training with single GPU,
            this value should be `None`; if training using data parallel with multi-GPU on
            a single node, this value should be `"dp"`. (Default: `None`)
        *args: Arguments to pass to `torch.utils.data.DataLoader`.
        **kwargs: Keyword arguments to pass to `torch.utils.data.DataLoader`.

    Raises:
        ValueError: `max_epochs` is specified when initializing the evaluation dataloader.
        RuntimeError: `torch.distributed` package is not available.
        RuntimeError: The default process group is not initialized. Make sure to call
            `torch.distributed.init_process_group` to initialize the default process
            group before doing a multiprocessing distributed training.
        ValueError: `self.sampler` is not an instance of `DistributedSampler`. An instance of
            `DistributedSampler` will shuffle and distribute data among GPUs, so it is required
            for data parallel training.
        ValueError: `DistributedSampler` passed in `self.sampler` is inconsistent with the default
            process group. Currently, we assume that all the GPUs in the node will be used for
            training. In this case, the instance of `DistributedSampler` should have
            `sampler.num_replicas == torch.distributed.get_world_size()`
            and `sampler.rank == torch.distributed.get_rank()`.
        TypeError: Parameter `distributed` is not correctly specified. Currently, it can only
            be set as `"dp"` or `None`.
        RuntimeError: Scaling is triggered when the profile window exceeds the number of iterations
            in one epoch. But latter is too small, so scaling can not produce a valid profile window.
            Please consider increasing batch size.
    """
    # Save attributes.
    self.batch_size = batch_size
    self.split = "train" if max_epochs != -1 else "eval"
    self.max_epochs = max_epochs
    self.log_prefix = f"[ZeusDataLoader({self.split})]"
    self.logger = get_logger(self.log_prefix)

    # Initialize the DataLoader.
    super().__init__(*args, batch_size=batch_size, **kwargs)

    # World size and rank for distributed training.
    # Set default value for single-GPU.
    self.world_size = 1
    self.rank = 0
    # Check whether we are doing a distributed training.
    # Pass in world size and rank.

    self.distributed = distributed

    if self.distributed == "dp":
        # Check if the distributed package is available.
        if not dist.is_available():
            raise RuntimeError("Requires distributed package to be available.")
        # Check if the process group is initialized.
        if not dist.is_initialized():
            raise RuntimeError(
                "Default process group has not been initialized,"
                " please make sure to call `init_process_group`"
                " before you instantiate `ZeusDataLoader`."
            )
        # Check if `self.sampler` is an instance of DistributedSampler.
        if not isinstance(getattr(self, "sampler", None), DistributedSampler):
            raise ValueError(
                "Sampler is not an instance of `DistributedSampler`."
                " Data parallel training on multi-GPU requires a `DistributedSampler`."
            )
        # Check the consistency between the sampler and process group.
        if (
            self.sampler.num_replicas != dist.get_world_size()
            or self.sampler.rank != dist.get_rank()
        ):
            raise ValueError(
                "`DistributedSampler` is inconsistent with the default process group."
                f" The default process group has `world_size={dist.get_world_size()}`,"
                f" `rank={dist.get_rank()}`."
            )
        self.world_size = dist.get_world_size()
        self.rank = dist.get_rank()
    elif self.distributed is not None:
        raise ValueError('`distributed` currently only accepts `"dp"` or `None`.')

    if self._is_train:
        self._log(
            f"Distributed data parallel: {'ON' if self.world_size > 1 else 'OFF'}"
        )

    if self._is_train:
        if ZeusDataLoader.train_batch_size != 0:
            # If max_epochs is specified when initializing a eval dataloader,
            # it will mistaken itself as a train dataloader.
            # In this case, raise a ValueError.
            raise ValueError("Specify max_epochs only to the train dataloader.")
        # In data parallel training, each DataLoader gets `batch_size=global_batch_size/num_gpus`.
        # So, we scale the `train_batch_size` for the consistency with ZeusMaster.
        # NOTE: Zeus assume `global_batch_size == batch_size * num_gpus`. So please ensure that
        # `global_batch_size` is divisible by `num_gpu` in the training script.
        ZeusDataLoader.train_batch_size = self.batch_size * self.world_size

    # Retrieve environment variables from ZeusMaster.
    self.target_metric = get_env("ZEUS_TARGET_METRIC", float)
    self.logdir = get_env("ZEUS_LOG_DIR", str, default="zeus_log")
    self.job_id = get_env("ZEUS_JOB_ID", str, default="zeus")
    self.cost_thresh = get_env("ZEUS_COST_THRESH", float, default=float("inf"))
    self.eta_knob = get_env("ZEUS_ETA_KNOB", float, default=0.5)
    self.monitor_path = get_env(
        "ZEUS_MONITOR_PATH",
        str,
        default="zeus_monitor",
    )
    self.warmup_iter, self.profile_iter = map(
        int, get_env("ZEUS_PROFILE_PARAMS", str, default="10,40").split(",")
    )
    self.use_optimal_pl = get_env("ZEUS_USE_OPTIMAL_PL", bool, default=True)

    # Create ZEUS_LOG_DIR if it does not exist.
    os.makedirs(self.logdir, exist_ok=True)

    # Whether the target metric was reached.
    self.target_metric_reached = False

    # Construct relevant paths.
    self.train_json = (
        f"{self.logdir}/{self.job_id}+bs{self.train_batch_size}.train.json"
    )
    self.power_json = f"{self.logdir}/bs{self.train_batch_size}.power.json"

    # Numbers related to the dataloader.
    # sample_num: the number of iterations processed in the current epoch.
    # num_samples: the total number of iterations in one epoch.
    self.epoch_num = 0
    self.sample_num = 0
    self.num_samples = len(self)

    # Pass the length of the eval dataloader for `epochs`.
    if not self._is_train:
        ZeusDataLoader.eval_num_samples = self.num_samples

    # If the number of iterations in one epoch (`num_samples`) is smaller than or equal
    # to one profile window (`warmup_iters + profile_iters`), we will not be able to
    # profile for any power limit. So, we scale the profile window to fit in one epoch.
    # We also avoid using the last batch of one epoch, becasue when `drop_last == True`,
    # the last batch will be smaller. This usually happens with large batch size on
    # small datasets, eg. CIFAR100.
    if self._is_train and self.warmup_iter + self.profile_iter >= self.num_samples:
        self._log(
            f"The profile window takes {self.warmup_iter + self.profile_iter}"
            f" iterations ({self.warmup_iter} for warmup + {self.profile_iter}"
            f" for profile) and exceeds the number of iterations ({self.num_samples})"
            f" in one epoch. Scaling the profile window to fit in one epoch..."
        )
        scaling_factor = (self.num_samples - 1) / (
            self.warmup_iter + self.profile_iter
        )
        self.warmup_iter = int(self.warmup_iter * scaling_factor)
        self.profile_iter = int(self.profile_iter * scaling_factor)
        if self.warmup_iter == 0 or self.profile_iter == 0:
            raise RuntimeError(
                f"Number of iterations in one epoch is {self.num_samples} and"
                " is too small for applying the scaling. Please consider using"
                " a smaller batch size. If you are running `run_zeus.py`, please"
                " pass a smaller value to `--b_max`."
            )
        self._log(
            f"Scaling done! New profile window takes {self.warmup_iter + self.profile_iter}"
            f" iterations ({self.warmup_iter} for warmup + {self.profile_iter} for profile)."
        )

    # Power profiling windows
    # We're interested in the average power and throughput here.
    #
    # +----- warmup_start (change power limit)
    # |        +----- prof_start (`_prof_window_push`)
    # |        |                      +----- prof_end (`_prof_window_pop`)
    # | warmup |        profile       |
    # v  iter  v          iter        v
    # ================================= =====================
    # |      power limit = 250W       | | power limit = 225W  ...
    # ================================= =====================
    #
    # =======================================================
    # |                         Epoch 1                       ...
    # =======================================================
    # ^
    # |
    # +------- Time/energy accounting for the entire training job (`_prof_window_push`)
    #
    # Initialize variables for profiling
    self.warmup_start_sample = 0
    self.prof_start_sample = 0
    self.prof_state = NOT_PROFILING
    self.prof_pl_index = 0

    # Initialize data structure for storing the energy accounting
    # based on the number of GPUs.
    if self._is_train:
        # Sanity check
        assert self.world_size > 0, f"{self.world_size=}"
        assert self.max_epochs > 0, f"{self.max_epochs=}"
        ZeusDataLoader.train_epoch_energy = np.zeros(
            shape=(self.world_size, self.max_epochs), dtype=np.float64
        )
        ZeusDataLoader.eval_epoch_energy = np.zeros(
            shape=(self.world_size, self.max_epochs), dtype=np.float64
        )

    gpus = get_gpus(ensure_homogeneous=True)
    for index in range(self.world_size):
        # Set persistent mode.
        # TODO(JW): Check SYS_ADMIN permissions and error with an explanation.
        gpus.setPersistenceMode(index, enable=True)

    # Query NVML for the possible power limit range. Unit is mW.
    min_pl, self.max_pl = gpus.getPowerManagementLimitConstraints(0)
    self.power_limits = list(range(self.max_pl, min_pl - 25_000, -25_000))
    if self._is_train:
        self._log(f"Power limit range: {self.power_limits}")

    # Check whether profiling is ON or OFF. If OFF, load the power limit
    # from power_json, and set power limit for all GPUs at the master process.
    if self._is_train and self.rank == 0:
        should_profile = self._should_profile
        self._log(f"Power profiling: {'ON' if should_profile else 'OFF'}")
        # Initialize profiling service
        ZeusDataLoader.zeus_monitor = ZeusMonitor(
            list(range(self.world_size)),
            self.monitor_path,
        )

        # If we need to do profiling, no need to touch the power limit.
        # If profiling is already done, load profile information from power_json.
        # Only then do we have the optimal PL available.
        # We only load in the train dataloader since it populates classvars.
        if not should_profile:
            self._load_power_results()
            self._set_gpu_steady_power_limit()

epochs

1
epochs()

Yield the current epoch number from 0 until when training should stop.

Training should stop when

  • the cost reached the cost threshold, or
  • the maximum number of epochs was reached, or
  • the target metric was reached.

When done, stores the job results in train_json.

Yields:

Type Description
int

Epoch indices starting from zero.

Raises:

Type Description
ZeusCostThresholdExceededException

the predicted cost after the next epoch exceeds the cost threshold. When doing data parallel training, this exception is used for ternimating all the processes.

Source code in zeus/run/dataloader.py
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
def epochs(self) -> Generator[int, None, None]:
    """Yield the current epoch number from 0 until when training should stop.

    Training should stop when

    - the cost reached the cost threshold, or
    - the maximum number of epochs was reached, or
    - the target metric was reached.

    When done, stores the job results in `train_json`.

    Yields:
        Epoch indices starting from zero.

    Raises:
        ZeusCostThresholdExceededException: the predicted cost after the next
            epoch exceeds the cost threshold. When doing data parallel training,
            this exception is used for ternimating all the processes.
    """
    # Sanity check.
    if not self._is_train:
        raise RuntimeError("Use epochs() on the train dataloader.")

    while True:
        # Variables for storing time/energy consumption & cost
        time_consumed, energy_consumed = -1, -1
        cost = -1
        if self.rank == 0:
            # Sanity checks.
            enum = self.epoch_num
            assert (
                len(self.train_epoch_time) == enum
            ), f"{len(self.train_epoch_time)=}"
            assert (
                len(self.eval_epoch_time) == enum
            ), f"{len(self.eval_epoch_time)=}"

            # Compute time and energy consumption up to now.
            # Compute time consumption at GPU_0
            time_consumed = sum(self.train_epoch_time + self.eval_epoch_time)
            # Compute energy consumption over all the GPUs
            energy_consumed = (
                self.train_epoch_energy.sum() + self.eval_epoch_energy.sum()
            )
            cost = zeus_cost(
                energy_consumed,
                time_consumed,
                self.eta_knob,
                self.max_pl // 1000 * self.world_size,
            )
            self._log(
                f"Up to epoch {self.epoch_num}: "
                f"time={time_consumed:.2f}, energy={energy_consumed:.2f}, cost={cost:.2f}"
            )

        # target_metric_reached is set when the current validation metric is reported to
        # the train dataloader after the end of each epoch.
        # Stop if the target metric was reached.
        if self.target_metric_reached:
            if self.rank == 0:
                # Sanity check that time/energy consumption & cost are valid in master process.
                assert time_consumed >= 0 and energy_consumed >= 0 and cost >= 0
                self._log(
                    f"Target metric {self.target_metric} was reached! Stopping."
                )
                self._save_train_results(energy_consumed, time_consumed, cost, True)
            return

        # Max epoch is a hard stop.
        if self.epoch_num >= self.max_epochs:
            if self.rank == 0:
                # Sanity check that time/energy consumption & cost are valid in master process.
                assert time_consumed >= 0 and energy_consumed >= 0 and cost >= 0
                self._log(
                    f"Maximum number of epochs {self.max_epochs} reached. Stopping."
                )
                self._save_train_results(
                    energy_consumed, time_consumed, cost, False
                )
            return

        # No need to do anything in the first epoch.
        if self.epoch_num == 0:
            yield 0
            continue

        # Just continue if we're profiling.
        # This will ignore and continue training even if the cost threshold was exceeded.
        # However, the profiling cost actually exceeding the cost threshold would not
        # happen frequently. It's more like a wrong cost threshold.
        if self._should_profile:
            if cost >= self.cost_thresh:
                self._log(
                    f"{cost=:.2f} exceeded threshold {self.cost_thresh:.2f} at GPU_{self.rank}, "
                    "but just continue since we're profiling."
                )
            yield self.epoch_num
            continue

        if self.rank == 0:
            # Sanity check that time/energy consumption & cost are valid in master process.
            assert time_consumed >= 0 and energy_consumed >= 0 and cost >= 0

            # We want to predict whether running the next epoch will exceed the cost threshold.
            next_train_time = (
                self.num_samples / self.train_tput_result[self.optimal_pl]
            )
            next_eval_time = (
                self.eval_num_samples / self.eval_tput_result[self.optimal_pl]
            )
            next_time = next_train_time + next_eval_time
            next_train_energy = (
                next_train_time * self.train_power_result[self.optimal_pl]
            )
            next_eval_energy = (
                next_eval_time * self.eval_power_result[self.optimal_pl]
            )
            next_energy = next_train_energy + next_eval_energy
            self._log(
                f"Optimal PL train & eval expected time={next_time:.2f} energy={next_energy:.2f}"
            )
            next_time_consumed = time_consumed + next_time
            next_energy_consumed = energy_consumed + next_energy
            next_cost = zeus_cost(
                next_energy_consumed,
                next_time_consumed,
                self.eta_knob,
                self.max_pl // 1000 * self.world_size,
            )
            self._log(
                f"Expected next epoch: time={next_time_consumed:.2f}, "
                f"energy={next_energy_consumed:.2f}, "
                f"cost={next_cost:.2f}"
            )

            # Stop if the predicted cost of the next epoch exceeds the cost threshold.
            if next_cost >= self.cost_thresh:
                # Save training results
                self._save_train_results(
                    energy_consumed, time_consumed, cost, False
                )
                # NOTE: We use a customized exception to terminate ALL the processes for
                # the purpose of multiprocessing management.
                # When doing data parallel training on multiple processes, ONLY the master
                # process will predict `next_cost` and do the threshold checking. However,
                # once the predicted cost exceeds the threshold, we want to terminate ALL
                # the processes. Currently this is achieved by throwing an exception at the
                # master process. The lauching script will terminate all the processes that
                # are still alive.
                raise ZeusCostThresholdExceededError(
                    time_consumed,
                    energy_consumed,
                    cost,
                    next_cost,
                    self.cost_thresh,
                )

        yield self.epoch_num

report_metric

1
report_metric(metric, higher_is_better)

Report the validation metric to the train dataloader.

If doing data parallel training, please make sure to call dist.all_reduce() to reduce the validation metric across all GPUs before calling train_loader.report_metric().

Parameters:

Name Type Description Default
metric float

The validation metric of the current epoch.

required
higher_is_better bool

For example, this should be True for accuracy and False for error.

required
Source code in zeus/run/dataloader.py
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
def report_metric(self, metric: float, higher_is_better: bool) -> None:
    """Report the validation metric to the train dataloader.

    If doing data parallel training, please make sure
    to call `dist.all_reduce()` to reduce the validation metric across all GPUs
    before calling `train_loader.report_metric()`.

    Args:
        metric: The validation metric of the current epoch.
        higher_is_better: For example, this should be `True` for accuracy
            and `False` for error.
    """
    assert self._is_train, "Use report_metric on the train dataloader."
    # ruff: noqa: PLR5501
    if higher_is_better:
        if metric >= self.target_metric:
            self.target_metric_reached = True
    else:
        if metric <= self.target_metric:
            self.target_metric_reached = True

_compute_optimal_pl

1
_compute_optimal_pl()

Return the cost-optimal power limit.

Source code in zeus/run/dataloader.py
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
def _compute_optimal_pl(self) -> int:
    """Return the cost-optimal power limit."""
    # Sanity checks.
    assert ZeusDataLoader.train_tput_result
    assert ZeusDataLoader.train_power_result
    # Only compute optimal PL at master process.
    assert self.rank == 0

    # Compute power cost
    tput = ZeusDataLoader.train_tput_result
    power = ZeusDataLoader.train_power_result
    cost_map = {
        pl: (
            self.eta_knob * power[pl]
            + (1 - self.eta_knob) * self.max_pl * self.world_size
        )
        / tput[pl]
        for pl in self.power_limits
    }
    optimal_pl = min(cost_map.keys(), key=cost_map.get)  # type: ignore
    self._log(f"Cost-optimal power limit is {optimal_pl//1000}W")
    return optimal_pl

_set_gpu_power_limit

1
_set_gpu_power_limit(power_limit)

Set the GPU's power limit using NVML.

This method only invokes NVML when power_limit is not the same as the current GPU power limit.

Parameters:

Name Type Description Default
power_limit int

Power limit to set.

required
Source code in zeus/run/dataloader.py
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
def _set_gpu_power_limit(self, power_limit: int) -> None:
    """Set the GPU's power limit using NVML.

    This method only invokes NVML when `power_limit` is not the same as
    the current GPU power limit.

    Args:
        power_limit: Power limit to set.
    """
    # Sanity check.
    # Only set power limit at master process.
    gpus = get_gpus()
    assert self.rank == 0
    assert len(gpus) == self.world_size

    # Set power limit for all GPUs.
    if self.current_gpu_pl != power_limit:
        for index in range(self.world_size):
            gpus.setPowerManagementLimit(index, power_limit)
            self._log(f"[GPU_{index}] Set GPU power limit to {power_limit//1000}W.")
        ZeusDataLoader.current_gpu_pl = power_limit

_set_gpu_steady_power_limit

1
_set_gpu_steady_power_limit()

Set the steady power limit based on self.use_optimal_pl.

Source code in zeus/run/dataloader.py
685
686
687
688
689
690
691
692
693
694
695
696
def _set_gpu_steady_power_limit(self) -> None:
    """Set the steady power limit based on self.use_optimal_pl."""
    # Sanity check.
    # Only set power limit at master process.
    assert self.rank == 0

    power_limit = ZeusDataLoader.optimal_pl if self.use_optimal_pl else self.max_pl
    self._log(
        "Steady state power limit: "
        f"{'OPT' if self.use_optimal_pl else 'MAX'} {power_limit//1000}W"
    )
    self._set_gpu_power_limit(power_limit)

_log

1
_log(message, level=logging.INFO, master_only=True)

Print out message with prefix.

Parameters:

Name Type Description Default
message str

The message to log out.

required
level int

The logging level to use. (Default: logging.INFO)

INFO
master_only bool

Whether only logged by master process. Usually set to True for the global logging and False for the GPU-specific logging . If set to False, a prefix indicates which GPU this log comes from will be included as well. (Default: True)

True
Source code in zeus/run/dataloader.py
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
def _log(
    self, message: str, level: int = logging.INFO, master_only: bool = True
) -> None:
    """Print out message with prefix.

    Args:
        message: The message to log out.
        level: The logging level to use. (Default: `logging.INFO`)
        master_only: Whether only logged by master process. Usually set to True for the
            global logging and False for the GPU-specific logging . If set to False,
            a prefix indicates which GPU this log comes from will be included as well.
            (Default: `True`)
    """
    if master_only:
        if self.rank == 0:
            self.logger.log(level, "%s", message)
    else:
        gpu_log_prefix = f"[GPU_{self.rank}]"
        self.logger.log(level, "%s %s", gpu_log_prefix, message)

_begin_measurement

1
_begin_measurement(name)

A wrapper function that starts a measurement window.

Source code in zeus/run/dataloader.py
736
737
738
739
def _begin_measurement(self, name: str) -> None:
    """A wrapper function that starts a measurement window."""
    assert self.rank == 0
    self._monitor.begin_window(name, sync_cuda=True)

_end_measurement

1
_end_measurement(name)

A wrapper function that ends a measurement window and returns measurements.

Source code in zeus/run/dataloader.py
741
742
743
744
def _end_measurement(self, name: str) -> Measurement:
    """A wrapper function that ends a measurement window and returns measurements."""
    assert self.rank == 0
    return self._monitor.end_window(name, sync_cuda=True)

_start_warmup

1
_start_warmup()

Let the GPU run for some time with the poewr limit to profile.

Source code in zeus/run/dataloader.py
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
def _start_warmup(self) -> None:
    """Let the GPU run for some time with the poewr limit to profile."""
    # Sanity checks.
    assert self._should_profile, f"start_warmup: {self._should_profile=}"
    assert self._is_train, f"start_warmup: {self._is_train=}"
    assert self._power_limits_left, f"start_warmup: {self._power_limits_left=}"
    # Sanity check that this profile window ends before the end of the current epoch.
    assert (
        self.sample_num + self.warmup_iter + self.profile_iter < self.num_samples
    ), (
        "start_warmup: "
        f"end_of_this_profile_window {self.sample_num + self.warmup_iter + self.profile_iter} "
        f"< end_of_this_epoch {self.num_samples}"
    )

    # Call cudaSynchronize to make sure this is the iteration boundary.
    torch.cuda.synchronize()

    # Change power limit.
    if self.rank == 0:
        power_limit = self.power_limits[self.prof_pl_index]
        self._set_gpu_power_limit(power_limit)

        self._log(f"Warm-up started with power limit {self.current_gpu_pl//1000}W")

    self.warmup_start_sample = self.sample_num

    # Set profiling state.
    self.prof_state = WARMING_UP

_start_prof

1
_start_prof()

Start profiling power consumption for the current power limit.

Source code in zeus/run/dataloader.py
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
def _start_prof(self) -> None:
    """Start profiling power consumption for the current power limit."""
    # Sanity checks.
    assert self._should_profile, f"start_prof: {self._should_profile=}"
    assert self._is_train, f"start_prof: {self._is_train=}"
    assert self._power_limits_left, f"start_prof: {self._power_limits_left=}"
    # Sanity check that this profile window ends before the end of the current epoch.
    assert self.sample_num + self.profile_iter < self.num_samples, (
        "start_prof: "
        f"end_of_this_profile_window {self.sample_num + self.profile_iter} "
        f"< end_of_this_epoch {self.num_samples}"
    )

    if self.rank == 0:
        # Push profiling window for the current power limit value.
        # This window will profile for `self.profile_iter` iterations.
        self._begin_measurement(
            f"__ZeusDataLoader_power_limit_{self.current_gpu_pl//1000}"
        )

    # Set the sample number when we started profiling.
    self.prof_start_sample = self.sample_num

    # Set profiling state.
    self.prof_state = PROFILING

    self._log(f"Profile started with power limit {self.current_gpu_pl//1000}W")

_end_prof

1
_end_prof()

End profiling power consumption for this power limit.

Raises:

Type Description
ValueError

ValueError raised by sklearn.metrics.auc in analyze.avg_power, might due to profile window too small. In this case, user should consider increasing profile window.

Source code in zeus/run/dataloader.py
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
def _end_prof(self) -> None:
    """End profiling power consumption for this power limit.

    Raises:
        ValueError: ValueError raised by sklearn.metrics.auc in analyze.avg_power,
            might due to profile window too small. In this case, user should consider
            increasing profile window.
    """
    # Sanity checks.
    assert self._should_profile, f"end_prof: {self._should_profile=}"
    assert self._is_train, f"end_prof: {self._is_train=}"
    assert self._power_limits_left, f"end_prof: {self._power_limits_left=}"
    # Sanity check that this profile window ends before the end of the current epoch.
    assert self.sample_num < self.num_samples, (
        "end_prof: "
        f"end_of_this_profile_window {self.sample_num} "
        f"< end_of_this_epoch {self.num_samples}"
    )

    # Set profiling state.
    self.prof_state = NOT_PROFILING

    # Call cudaSynchronize to make sure this is the iteration boundary.
    torch.cuda.synchronize()

    # Advance to the next power limit. Affects self.power_limits_left.
    self.prof_pl_index += 1

    if self.rank == 0:
        # Pop profiling window for the current power limit and fetch profiling results.
        profiling_result = self._end_measurement(
            f"__ZeusDataLoader_power_limit_{self.current_gpu_pl//1000}"
        )
        time_consumed, energy_consumed = (
            profiling_result.time,
            profiling_result.energy,
        )
        # Summing up the average power on all GPUs.
        sum_avg_power = sum(energy_consumed.values()) / time_consumed
        self.train_power_result[self.current_gpu_pl] = sum_avg_power

        # Compute and save throughput. We use the time at the master process.
        samples_processed = self.sample_num - self.prof_start_sample
        throughput = samples_processed / time_consumed
        self.train_tput_result[self.current_gpu_pl] = throughput

        self._log(f"Profile done with power limit {self.current_gpu_pl//1000}W")

        # If we're done with all power limits, compute the optimal power limit
        # and change to that power limit for the rest of the epoch.
        # This will lead to the eval epoch being run with the optimal power limit,
        # and since self.should_profile is still True, tput/power will be profiled.
        # Profiling the optimal power limit on eval set will help us better predict
        # the time and energy consumed in the next eval epoch, to help us decide
        # whether running next epoch will exceed the cost threshold.
        if not self._power_limits_left:
            self._log("This was the last power limit to explore.")
            ZeusDataLoader.optimal_pl = self._compute_optimal_pl()
            self._set_gpu_power_limit(ZeusDataLoader.optimal_pl)

_save_power_results

1
_save_power_results()

Write the power profiling results to power_json.

Source code in zeus/run/dataloader.py
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
def _save_power_results(self) -> None:
    """Write the power profiling results to `power_json`."""
    # Sanity check.
    # Only save power results at master process.
    assert self.rank == 0

    prof_result = dict(
        job_id=self.job_id,  # Not used. Just for the purpose of record.
        train_power=self.train_power_result,
        train_throughput=self.train_tput_result,
        eval_power=self.eval_power_result,
        eval_throughput=self.eval_tput_result,
        optimal_pl=self.optimal_pl,
    )
    # NOTE: Write-then-move needed if we're handling concurrent jobs.
    with open(self.power_json, "w") as f:
        json.dump(prof_result, f)
    with open(self.power_json, "r") as f:
        self._log("Power profiling done.")
        self._log(f"Saved {self.power_json}: {f.read()}")

_load_power_results

1
_load_power_results()

Load power profiling information into the class from power_json.

Source code in zeus/run/dataloader.py
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
def _load_power_results(self) -> None:
    """Load power profiling information into the class from `power_json`."""
    # Sanity check.
    # Only load power results at master process.
    assert self.rank == 0

    # Helper function that casts the keys of a dictionary to integer.
    def as_int_key(dictionary: dict[str, float]) -> dict[int, float]:
        result = {}
        for key, value in dictionary.items():
            result[int(key)] = value
        return result

    with open(self.power_json, "r") as f:
        power_results = json.load(f)

    ZeusDataLoader.train_power_result = as_int_key(power_results["train_power"])
    ZeusDataLoader.train_tput_result = as_int_key(power_results["train_throughput"])
    ZeusDataLoader.eval_power_result = as_int_key(power_results["eval_power"])
    ZeusDataLoader.eval_tput_result = as_int_key(power_results["eval_throughput"])
    ZeusDataLoader.optimal_pl = power_results["optimal_pl"]

    self._log(f"Loaded {self.power_json}: {power_results}")

_save_train_results

1
_save_train_results(energy, time_, cost, reached)

Write the job training results to train_json.

Source code in zeus/run/dataloader.py
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
def _save_train_results(
    self, energy: float, time_: float, cost: float, reached: bool
) -> None:
    """Write the job training results to `train_json`."""
    # Sanity check.
    # Only load power results at master process.
    assert self.rank == 0

    train_result = dict(
        energy=energy,
        time=time_,
        cost=cost,  # Not used. Just for reference.
        num_epochs=self.epoch_num,  # Not used. Just for reference.
        reached=reached,
    )
    with open(self.train_json, "w") as f:
        json.dump(train_result, f)
    with open(self.train_json, "r") as f:
        self._log("Training done.")
        self._log(f"Saved {self.train_json}: {f.read()}")

__iter__

1
__iter__()

Signal the beginning of an epoch.

Source code in zeus/run/dataloader.py
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
def __iter__(self):
    """Signal the beginning of an epoch."""
    # Sanity check that there is no incomplete profile window at the beginning of epoch,
    # because we start profiling only if the entire profiling window can fit in the rest of
    # the training epoch.
    assert self.prof_state == NOT_PROFILING, f"__iter__: {self.prof_state=}"

    # Update counters.
    self.epoch_num += 1
    self.sample_num = 0
    self._log(f"Epoch {self.epoch_num} begin.")

    # Cache the dataloader iterator.
    self.iter = super().__iter__()

    if self.rank == 0:
        # Push profiling window for the current epoch.
        # Note that both train and eval dataloaders will push one profiling window *separately*.
        self._begin_measurement("__ZeusDataLoader_epoch")
        # The power limit of the GPU is only changed by the train dataloader (`self._is_train`).
        # If we're not profiling, use the steady state power limit (`self._should_profile`).
        # If we are profiling, the power limit will be set in __next__ with warmup.
        # Power limit result is already loaded in when initializing the train dataloader,
        # so we just set the power limit directly.
        if self._is_train and not self._should_profile:
            self._set_gpu_steady_power_limit()

    return self

__next__

1
__next__()

Signal the beginning of an iteration.

Source code in zeus/run/dataloader.py
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
def __next__(self):
    """Signal the beginning of an iteration."""
    # Update counters.
    self.sample_num += 1

    # Try to fetch next batch.
    try:
        data = next(self.iter)
    except StopIteration:
        # End of this epoch.
        # Sanity check that there is no incomplete profile window at the end of epoch.
        assert self.prof_state == NOT_PROFILING, f"__next__: {self.prof_state=}"

        # Make sure all GPU operations are done so that now is the *actual* end of this epoch.
        torch.cuda.synchronize()

        # Compute epoch time and energy consumption.
        # We're interested in the actual time/energy consumption here.
        #
        #   ================================================================
        #   |                      Train                       ||   Eval   |
        #   ================================================================
        #   ^                                                  ^^          ^
        #   |                                                 / |          |
        #   _prof_window_push()              _prof_window_pop() |          |
        #   for train loader                   for train loader |          |
        #                                                       |          |
        #                                     _prof_window_push()   _prof_window_pop()
        #                                         for eval loader      for eval loader
        #
        if self.rank == 0:
            # Sanity check that `epoch_num` is within valid range
            assert self.epoch_num >= 1, f"__next__: {self.epoch_num=}"
            # Pop profiling window for the current epoch and fetch profiling result.
            profiling_result = self._end_measurement("__ZeusDataLoader_epoch")
            time_consumed, energy_consumed = (
                profiling_result.time,
                profiling_result.energy,
            )
            sum_energy_consumed = sum(energy_consumed.values())
            if self._is_train:
                self.train_epoch_time.append(time_consumed)
                # Record the energy consumption for each GPU.
                for index in range(self.world_size):
                    self.train_epoch_energy[index][
                        self.epoch_num - 1
                    ] = energy_consumed[index]
            else:
                # Integrate the last time_consumed seconds.
                self.eval_epoch_time.append(time_consumed)
                # Record the energy consumption for each GPU.
                for index in range(self.world_size):
                    self.eval_epoch_energy[index][
                        self.epoch_num - 1
                    ] = energy_consumed[index]
                # For the eval dataloader, we want to record the throughput and power
                # for the current power limit. Since the train dataloader sets the power limit
                # to the optimal power limit right after profiling is done, this will naturally
                # record the tput/power of the optimal PL. From the following epochs where we
                # don't profile anything, we directly use these values to compute the time and
                # energy consumed.
                if self._should_profile:
                    self.eval_tput_result[self.current_gpu_pl] = (
                        self.num_samples / time_consumed
                    )
                    self.eval_power_result[self.current_gpu_pl] = (
                        sum_energy_consumed / time_consumed
                    )
                    # The optimal PL being known means that all power limits have been explored.
                    # Let us end profiling by writing profile information to `power_json`.
                    if self.optimal_pl != 0:
                        self._save_power_results()
            self._log(
                f"{self.split} epoch {self.epoch_num} done: "
                f"time={time_consumed:.2f} energy={sum_energy_consumed:.2f}"
            )

        # Re-raise StopIteration.
        raise

    # We're in the middle of an epoch. The train loader has power limits left to profile.
    if self._is_train and self._should_profile and self._power_limits_left:
        # We weren't doing anything. Start warming up if the iterations left in
        # the current epoch can accommodate at least one profile window.
        if (
            self.prof_state == NOT_PROFILING
            and self.sample_num + self.warmup_iter + self.profile_iter
            < self.num_samples
        ):
            self._start_warmup()
        # We're done warming up. Start the actual profiling window.
        elif (
            self.prof_state == WARMING_UP
            and self.sample_num - self.warmup_start_sample == self.warmup_iter
        ):
            self._start_prof()
        # We're done profiling. Stop the profiling window and gather results.
        elif (
            self.prof_state == PROFILING
            and self.sample_num - self.prof_start_sample == self.profile_iter
        ):
            self._end_prof()

    return data