mab
zeus.optimizer.batch_size.server.mab
Thompson Sampling policy for Gaussian bandits. MAB related logic is implented here.
GaussianTS
Thompson Sampling policy for Gaussian bandits.
For each arm, the reward is modeled as a Gaussian distribution with known precision. The conjugate priors are also Gaussian distributions.
Source code in zeus/optimizer/batch_size/server/mab.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
__init__
__init__(service)
Source code in zeus/optimizer/batch_size/server/mab.py
40 41 42 43 |
|
_fit_arm
_fit_arm(bs_base, prior_mean, prior_precision, rewards)
Update the parameter distribution for one arm.
Reference: https://en.wikipedia.org/wiki/Conjugate_prior
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bs_base |
BatchSizeBase
|
job id and batch size tha represents this arm |
required |
prior_mean |
float
|
Mean of the belief prior distribution. |
required |
prior_precision |
float
|
Precision of the belief prior distribution. |
required |
rewards |
ndarray
|
Array of rewards observed by pulling that arm. |
required |
Returns:
Type | Description |
---|---|
GaussianTsArmState
|
Updated arm state |
Source code in zeus/optimizer/batch_size/server/mab.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
|
predict
predict(job_id, prior_precision, num_exploration, arms)
Return the arm with the largest sampled expected reward.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job_id |
str
|
job id |
required |
prior_precision |
float
|
Precision of the belief prior distribution. |
required |
num_exploration |
int
|
How many static explorations to run when no observations are available. |
required |
arms |
list[GaussianTsArmState]
|
list of arms |
required |
Returns:
Type | Description |
---|---|
int
|
batch size to use |
Source code in zeus/optimizer/batch_size/server/mab.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
construct_mab
async
construct_mab(job, evidence, good_bs)
Construct arms and initialize them.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job |
JobState
|
state of job. |
required |
evidence |
ExplorationsPerJob
|
Completed explorations. We create arms based on the explorations we have done during pruning stage. |
required |
good_bs |
list[int]
|
Converged batch size list. |
required |
Returns:
Type | Description |
---|---|
list[GaussianTsArmState]
|
list of arms that we created |
Raises:
Type | Description |
---|---|
`ValueError`
|
If exploration states is invalid (ex. number of pruning rounds doesn't corresponds) |
`ZeusBSOValueError`
|
No converged batch sizes from pruning stage. |
Source code in zeus/optimizer/batch_size/server/mab.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
report
async
report(job, trial_result)
Based on the measurement, update the arm state.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job |
JobState
|
state of the job |
required |
trial_result |
UpdateTrial
|
result of training (job id, batch_size, trial_number) |
required |
Raises:
Type | Description |
---|---|
`ZeusBSOValueError`
|
When the arm (job id, batch_size) doesn't exist |
Source code in zeus/optimizer/batch_size/server/mab.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|