Skip to content

schema

zeus.optimizer.batch_size.server.database.schema

Database schema.

Base

Bases: DeclarativeBase

Base class for schemas.

Source code in zeus/optimizer/batch_size/server/database/schema.py
23
24
25
26
class Base(DeclarativeBase):
    """Base class for schemas."""

    pass

JobTable

Bases: Base

Job table schema.

Refer to JobState for attributes.

Source code in zeus/optimizer/batch_size/server/database/schema.py
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
class JobTable(Base):
    """Job table schema.

    Refer to [`JobState`][zeus.optimizer.batch_size.server.job.models.JobState] for attributes.
    """

    __tablename__ = "Job"

    job_id: Mapped[str] = mapped_column(VARCHAR(400), primary_key=True)
    job_id_prefix: Mapped[str] = mapped_column(VARCHAR(300), nullable=False)
    default_batch_size: Mapped[int] = mapped_column(Integer, nullable=False)
    higher_is_better_metric: Mapped[bool] = mapped_column(Boolean, default=True)
    eta_knob: Mapped[float] = mapped_column(Float, default=0.5)
    beta_knob: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
    target_metric: Mapped[float] = mapped_column(Float, default=0.5)
    max_epochs: Mapped[int] = mapped_column(Integer, default=100)
    num_pruning_rounds: Mapped[int] = mapped_column(Integer, default=2)
    window_size: Mapped[int] = mapped_column(Integer, default=10)

    max_power: Mapped[float] = mapped_column(Float, nullable=False)
    number_of_gpus: Mapped[int] = mapped_column(Integer, nullable=False)
    gpu_model: Mapped[str] = mapped_column(VARCHAR(length=30), nullable=False)

    mab_prior_mean: Mapped[float] = mapped_column(Float, default=0.0)
    mab_prior_precision: Mapped[float] = mapped_column(Float, default=0.0)
    mab_num_explorations: Mapped[int] = mapped_column(Integer, default=2)
    mab_seed: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)

    mab_random_generator_state: Mapped[Optional[str]] = mapped_column(
        VARCHAR(length=10000), nullable=True
    )
    exp_default_batch_size: Mapped[int] = mapped_column(Integer, nullable=False)

    stage: Mapped[Stage] = mapped_column(Enum(Stage), default=Stage.Pruning)
    min_cost: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
    min_cost_batch_size: Mapped[int] = mapped_column(Integer, nullable=False)

    batch_sizes: Mapped[list["BatchSizeTable"]] = relationship(
        order_by="BatchSizeTable.batch_size.asc()",
        back_populates="job",
        # always fetch batch size(int) whenever we fetch the job.
        # https://docs.sqlalchemy.org/en/14/orm/loading_relationships.html#relationship-loading-techniques
        lazy="joined",
        # Delete all children if the job gets deleted.
        # https://docs.sqlalchemy.org/en/20/orm/cascades.html
        cascade="all, delete-orphan",
    )

BatchSizeTable

Bases: Base

Batch size states table schema. Represents one batch size of a job.

(job_id, batch_size) as a pk, and have three states(exploration, measurement, GaussianTs arm state) as fk. For explorations and measurements, one-to-many relationship. For arm_state, one-to-(zero or one) relationship.

Source code in zeus/optimizer/batch_size/server/database/schema.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
class BatchSizeTable(Base):
    """Batch size states table schema. Represents one batch size of a job.

    (job_id, batch_size) as a pk, and have three states(exploration, measurement, GaussianTs arm state) as fk.
    For explorations and measurements, one-to-many relationship. For arm_state, one-to-(zero or one) relationship.
    """

    __tablename__ = "BatchSize"

    job_id: Mapped[str] = mapped_column(
        ForeignKey(
            "Job.job_id",
            ondelete="CASCADE",
        ),
        primary_key=True,
    )
    batch_size: Mapped[int] = mapped_column(Integer, primary_key=True)

    trials: Mapped[list["TrialTable"]] = relationship(
        back_populates="batch_size_state", cascade="all, delete-orphan"
    )

    arm_state: Mapped[Optional["GaussianTsArmStateTable"]] = relationship(
        back_populates="batch_size_state",  # populates GaussianTsArmState->BatchSize
        # https://stackoverflow.com/questions/39869793/when-do-i-need-to-use-sqlalchemy-back-populates
        cascade="all, delete-orphan",
    )

    job: Mapped["JobTable"] = relationship(back_populates="batch_sizes")

GaussianTsArmStateTable

Bases: Base

Gaussian arm state schema. Represents a gaussian thompson arm states of a batch size.

Refer to GaussianTsArmState for attributes.

Source code in zeus/optimizer/batch_size/server/database/schema.py
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
class GaussianTsArmStateTable(Base):
    """Gaussian arm state schema. Represents a gaussian thompson arm states of a batch size.

    Refer to [`GaussianTsArmState`][zeus.optimizer.batch_size.server.batch_size_state.models.GaussianTsArmState] for attributes.
    """

    __tablename__ = "GaussianTsArmState"

    job_id: Mapped[str] = mapped_column(VARCHAR(300), primary_key=True)
    batch_size: Mapped[int] = mapped_column(Integer, primary_key=True)  # arm

    param_mean: Mapped[float] = mapped_column(Float, default=0.0)
    param_precision: Mapped[float] = mapped_column(Float, default=0.0)
    reward_precision: Mapped[float] = mapped_column(Float, default=0.0)
    num_observations: Mapped[int] = mapped_column(Integer, default=0)

    batch_size_state: Mapped["BatchSizeTable"] = relationship(
        back_populates="arm_state"
    )

    __table_args__ = (
        ForeignKeyConstraint(
            [job_id, batch_size],
            [BatchSizeTable.job_id, BatchSizeTable.batch_size],
            ondelete="CASCADE",
        ),
    )

TrialType

Bases: Enum

Type of trial.

Exploration is a trial done during Pruning stage. Concurrent is a trial done as a concurrent job submission. MAB is a trial done during the MAB stage.

Source code in zeus/optimizer/batch_size/server/database/schema.py
138
139
140
141
142
143
144
145
146
147
148
class TrialType(enum.Enum):
    """Type of trial.

    Exploration is a trial done during Pruning stage.
    Concurrent is a trial done as a concurrent job submission.
    MAB is a trial done during the MAB stage.
    """

    Exploration = "Exploration"
    Concurrent = "Concurrent"
    MAB = "MAB"

TrialStatus

Bases: Enum

Status of trial.

Dispatched means this trial is issued. Succeded means trial ended without error. Failed means trial ended with error.

Source code in zeus/optimizer/batch_size/server/database/schema.py
151
152
153
154
155
156
157
158
159
160
161
class TrialStatus(enum.Enum):
    """Status of trial.

    Dispatched means this trial is issued.
    Succeded means trial ended without error.
    Failed means trial ended with error.
    """

    Dispatched = "Dispatched"
    Succeeded = "Succeeded"
    Failed = "Failed"

TrialTable

Bases: Base

Represents each trial of training.

Refer to Trial for attributes.

Source code in zeus/optimizer/batch_size/server/database/schema.py
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class TrialTable(Base):
    """Represents each trial of training.

    Refer to [`Trial`][zeus.optimizer.batch_size.server.batch_size_state.models.Trial] for attributes.
    """

    __tablename__ = "Trial"

    job_id: Mapped[str] = mapped_column(VARCHAR(300), primary_key=True, nullable=False)
    batch_size: Mapped[int] = mapped_column(Integer, nullable=False)
    trial_number: Mapped[int] = mapped_column(Integer, primary_key=True, nullable=False)
    start_timestamp: Mapped[datetime] = mapped_column(DateTime, nullable=False)
    type: Mapped[TrialType] = mapped_column(Enum(TrialType), nullable=False)
    status: Mapped[TrialStatus] = mapped_column(Enum(TrialStatus), nullable=False)

    end_timestamp: Mapped[Optional[datetime]] = mapped_column(DateTime, nullable=True)
    time: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
    energy: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
    converged: Mapped[Optional[bool]] = mapped_column(Boolean, nullable=True)

    batch_size_state: Mapped["BatchSizeTable"] = relationship(back_populates="trials")

    __table_args__ = (
        ForeignKeyConstraint(
            [job_id, batch_size],
            [BatchSizeTable.job_id, BatchSizeTable.batch_size],
            ondelete="CASCADE",
        ),
    )