energy
zeus.monitor.energy
Measure the GPU time and energy consumption of a block of code.
Measurement
dataclass
Measurement result of one window.
Attributes:
Name | Type | Description |
---|---|---|
time |
float
|
Time elapsed (in seconds) during the measurement window. |
gpu_energy |
dict[int, float]
|
Maps GPU indices to the energy consumed (in Joules) during the
measurement window. GPU indices are from the DL framework's perspective
after applying |
cpu_energy |
dict[int, float] | None
|
Maps CPU indices to the energy consumed (in Joules) during the measurement window. Each CPU index refers to one powerzone exposed by RAPL (intel-rapl:d). This can be 'None' if CPU measurement is not available. |
dram_energy |
dict[int, float] | None
|
Maps CPU indices to the energy consumed (in Joules) during the measurement window. Each CPU index refers to one powerzone exposed by RAPL (intel-rapl:d) and DRAM measurements are taken from sub-packages within each powerzone. This can be 'None' if CPU measurement is not available or DRAM measurement is not available. |
Source code in zeus/monitor/energy.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
total_energy
cached
property
total_energy
Total energy consumed (in Joules) during the measurement window.
MeasurementState
dataclass
Measurement state to keep track of measurements in start_window.
Used in ZeusMonitor to map string keys of measurements to this dataclass.
Attributes:
Name | Type | Description |
---|---|---|
time |
float
|
The beginning timestamp of the measurement window. |
gpu_energy |
dict[int, float]
|
Maps GPU indices to the energy consumed (in Joules) during the
measurement window. GPU indices are from the DL framework's perspective
after applying |
cpu_energy |
dict[int, float] | None
|
Maps CPU indices to the energy consumed (in Joules) during the measurement window. Each CPU index refers to one powerzone exposed by RAPL (intel-rapl:d). This can be 'None' if CPU measurement is not available. |
dram_energy |
dict[int, float] | None
|
Maps CPU indices to the energy consumed (in Joules) during the measurement window. Each CPU index refers to one powerzone exposed by RAPL (intel-rapl:d) and DRAM measurements are taken from sub-packages within each powerzone. This can be 'None' if CPU measurement is not available or DRAM measurement is not available. |
Source code in zeus/monitor/energy.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
|
total_energy
cached
property
total_energy
Total energy consumed (in Joules) during the measurement window.
ZeusMonitor
Measure the GPU energy and time consumption of a block of code.
Works for multi-GPU and heterogeneous GPU types. Aware of CUDA_VISIBLE_DEVICES
.
For instance, if CUDA_VISIBLE_DEVICES=2,3
, GPU index 1
passed into gpu_indices
will be interpreted as CUDA device 3
.
You can mark the beginning and end of a measurement window, during which the GPU energy and time consumed will be recorded. Multiple concurrent measurement windows are supported.
For Volta or newer GPUs, energy consumption is measured very cheaply with the
nvmlDeviceGetTotalEnergyConsumption
API. On older architectures, this API is
not supported, so a separate Python process is used to poll nvmlDeviceGetPowerUsage
to get power samples over time, which are integrated to compute energy consumption.
Warning
Since the monitor may spawn a process to poll the power API on GPUs older than
Volta, the monitor should not be instantiated as a global variable
without guarding it with if __name__ == "__main__"
.
Refer to the "Safe importing of main module" section in the
Python documentation
for more details.
Integration Example
import time
from zeus.monitor import ZeusMonitor
def training():
# A dummy training function
time.sleep(5)
if __name__ == "__main__":
# Time/Energy measurements for four GPUs will begin and end at the same time.
gpu_indices = [0, 1, 2, 3]
monitor = ZeusMonitor(gpu_indices)
# Mark the beginning of a measurement window. You can use any string
# as the window name, but make sure it's unique.
monitor.begin_window("entire_training")
# Actual work
training()
# Mark the end of a measurement window and retrieve the measurment result.
result = monitor.end_window("entire_training")
# Print the measurement result.
print(f"Training consumed {result.total_energy} Joules.")
for gpu_idx, gpu_energy in result.gpu_energy.items():
print(f"GPU {gpu_idx} consumed {gpu_energy} Joules.")
Attributes:
Name | Type | Description |
---|---|---|
gpu_indices |
`list[int]`
|
Indices of all the CUDA devices to monitor, from the
DL framework's perspective after applying |
Source code in zeus/monitor/energy.py
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|
__init__
__init__(
gpu_indices=None,
cpu_indices=None,
approx_instant_energy=False,
log_file=None,
sync_execution_with="torch",
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gpu_indices |
list[int] | None
|
Indices of all the CUDA devices to monitor. Time/Energy measurements
will begin and end at the same time for these GPUs (i.e., synchronized).
If None, all the GPUs available will be used. |
None
|
cpu_indices |
list[int] | None
|
Indices of the CPU packages to monitor. If None, all CPU packages will be used. |
None
|
approx_instant_energy |
bool
|
When the execution time of a measurement window is
shorter than the NVML energy counter's update period, energy consumption may
be observed as zero. In this case, if |
False
|
log_file |
str | Path | None
|
Path to the log CSV file. If |
None
|
sync_execution_with |
Literal['torch', 'jax']
|
Deep learning framework to use to synchronize CPU/GPU computations.
Defaults to |
'torch'
|
Source code in zeus/monitor/energy.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
_get_instant_power
_get_instant_power()
Measure the power consumption of all GPUs at the current time.
Source code in zeus/monitor/energy.py
249 250 251 252 253 254 255 256 |
|
begin_window
begin_window(key, sync_execution=True)
Begin a new measurement window.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str
|
Unique name of the measurement window. |
required |
sync_execution |
bool
|
Whether to wait for asynchronously dispatched computations to finish before starting the measurement window. For instance, PyTorch and JAX will run GPU computations asynchronously, and waiting them to finish is necessary to ensure that the measurement window captures all and only the computations dispatched within the window. |
True
|
Source code in zeus/monitor/energy.py
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
end_window
end_window(key, sync_execution=True, cancel=False)
End a measurement window and return the time and energy consumption.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
key |
str
|
Name of an active measurement window. |
required |
sync_execution |
bool
|
Whether to wait for asynchronously dispatched computations to finish before starting the measurement window. For instance, PyTorch and JAX will run GPU computations asynchronously, and waiting them to finish is necessary to ensure that the measurement window captures all and only the computations dispatched within the window. |
True
|
cancel |
bool
|
Whether to cancel the measurement window. If |
False
|
Source code in zeus/monitor/energy.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
|