simulate
zeus._legacy.simulate
A simulator for running trace-driven Zeus experiments.
HistoryEntry
dataclass
Represents the config and result of a job run that may have failed.
Attributes:
Name | Type | Description |
---|---|---|
bs |
int
|
Batch size |
pl |
int
|
Power limit |
energy |
float
|
Energy consumption in Joules |
reached |
bool
|
Whether the target metric was reached at the end |
time |
float
|
Time consumption in seconds |
Source code in zeus/_legacy/simulate.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
Simulator
Simulates job execution optimized by Zeus.
Source code in zeus/_legacy/simulate.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
|
__init__
__init__(
summary_train,
summary_power,
batch_size_optimizer,
power_limit_optimizer,
seed=123456,
verbose=True,
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
summary_train |
str | DataFrame
|
Path to or |
required |
summary_power |
str | DataFrame
|
Path to or |
required |
batch_size_optimizer |
BatchSizeOptimizer
|
The user is expected to construct the BSO with the desired policy and pass it into the simulator. |
required |
power_limit_optimizer |
PowerLimitOptimizer
|
The user is expected to construct the PLO with the desired policy and pass it into the simulator. |
required |
seed |
int
|
The random seed. Every invocation of any simulation method in this class is deterministic given the random seed, because the internal RNG is deepcopied before running the simulation. |
123456
|
verbose |
bool
|
Whether to log out the internal states of the simulator. |
True
|
Source code in zeus/_legacy/simulate.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
simulate_one_job
simulate_one_job(job, num_recurrence, beta_knob, eta_knob)
Simulate a sequentially recurring job. Explore with early stopping.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job |
Job
|
Job spec to simulate. |
required |
num_recurrence |
int
|
How many times the job recurs. |
required |
beta_knob |
float
|
|
required |
eta_knob |
float
|
\(\eta\) used in the hybrid cost metric. \(\textrm{cost} = \eta \cdot \textrm{ETA} + (1 - \eta) \cdot \textrm{MaxPower} \cdot \textrm{TTA}\) |
required |
Returns:
Type | Description |
---|---|
list[HistoryEntry]
|
A list of |
Source code in zeus/_legacy/simulate.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
|
simulate_one_alibaba_group
simulate_one_alibaba_group(
job, group_df, beta_knob, eta_knob
)
Run simulation on one group in the Alibaba trace.
Concurrent job submissions (jobs that start before the previous job
finishes) are launched with the batch size known to be of minimum
cost at that time. The BSO also observes the results of these jobs
when they are done, and these jobs may well finish before a job that
started before it. See observe
in PruningGTSBatchSizeOptimizer for
an example of handing such a scenario.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job |
Job
|
Job spec of this group. |
required |
group_df |
DataFrame
|
DataFrame of this group. Fields: - group: Group ID in trace. Identical across all rows. - dataset: Dataset name. Identical across all rows. - start_time: Job start time in the trace. - end_time: Job end time in the trace. - runtime_ratio: runtime of this job over the mean runtime of all the jobs of this dataset. Captures intra-dataset job runtime differences. |
required |
beta_knob |
float
|
|
required |
eta_knob |
float
|
\(\eta\) used in the hybrid cost metric. \(\textrm{cost} = \eta \cdot \textrm{ETA} + (1 - \eta) \cdot \textrm{MaxPower} \cdot \textrm{TTA}\) |
required |
Returns:
Type | Description |
---|---|
list[HistoryEntry]
|
A list of |
Source code in zeus/_legacy/simulate.py
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
|
_run_job
_run_job(
job,
batch_size,
power_limit,
rng,
cost_ub,
eta_knob,
profile_power,
)
Simulate running the job and return the energy consumed and whether it converged.
This method will randomly choose one of the possible training "paths". Then, based on cost_ub, it will compute the maximum number of epochs the job can run. If the path's target_epoch is smaller than or equal to the maximum number of epochs, the cost incurred until target_epoch is returned. Otherwise, the cost incurred until the maximum number of epochs is returned.
It is important to note that the job may never run when the first epoch's cost is already expected to exceed the cost upper bound. In such a case, the returned time and energy consumptions will be zero. This case must be treated separately in the calling code.
If profile_power is True, the first epoch will JIT-profile power limits coarsely by dividing the epoch evenly into len(available_power_limits) pieces. Thus the the first epoch's energy and time consumption will be slightly adjusted.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
job |
Job
|
Job spec to run. |
required |
batch_size |
int
|
Batch size to use. |
required |
power_limit |
int
|
Power limit to use. Regardless of whether this run of this batch size requires power profiling, the simulator will input the optimal power limit for the batch size. The first epoch energy consumption from power profiling is adjusted in the latter half of this method based on the profile_power flag. |
required |
rng |
Generator
|
Random number generator used to sample one training path. |
required |
cost_ub |
float
|
Cost upper bound. The job is terminated when the next epoch is going to exceed the cost upper bound. |
required |
eta_knob |
float
|
\(\eta\) used in the hybrid cost metric. \(\textrm{cost} = \eta \cdot \textrm{ETA} + (1 - \eta) \cdot \textrm{MaxPower} \cdot \textrm{TTA}\) |
required |
profile_power |
bool
|
Whether this run of the job should profile power during the first epoch. |
required |
Returns:
Type | Description |
---|---|
tuple[float, float, bool]
|
Tuple of energy consumption, time consumption, and whether the job reached the target metric. |
Source code in zeus/_legacy/simulate.py
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
|
_profile_power_limit
_profile_power_limit(job, batch_size, eta_knob)
Simulate running the job and profiling the power limit.
Returns:
Type | Description |
---|---|
dict[int, float]
|
Dictionary mapping PL to |
Source code in zeus/_legacy/simulate.py
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 |
|
_profile_batch_size_range
_profile_batch_size_range(job)
Simulate profiling the available batch size range of the job.
Returns:
Type | Description |
---|---|
list[int]
|
A list of feasible batch sizes. |
Source code in zeus/_legacy/simulate.py
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 |
|