Optimizing Energy with Performance in Mind

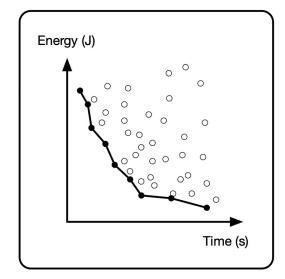
Ruofan Wu December 2nd, 2025

Energy Optimization for Al

Principles

• The time—energy trade-off frontier is a key object for reasoning.

- Same computation
- Different ways



Overview of Existing work

Serving

DynamoLLM (HPCA '25)

The ML.ENERGY Benchmark (NeurIPS '25 D&B)

Training

Zeus (NSDI '23)

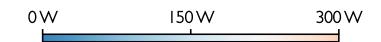
Perseus (SOSP '24)

DynamoLLM: Designing
LLM Inference Clusters for
Performance and
Energy Efficiency

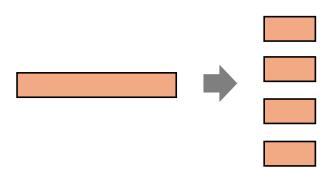
Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Torrellas, Esha Choukse

How to minimize energy consumption given latency deadlines?

Time vs. Energy Trade-off



Model parallelism



GPU frequency

Time: $0.8s \rightarrow 0.25s$

Energy: $200J \rightarrow 250J$

Time: $0.25s \rightarrow 0.27s$

Energy: $75J \rightarrow 60J$

LLM Inference

Prefill Decode

What is DynamoLLM ? It's a dynamic energy-management system

Compute-bound Memory-bound

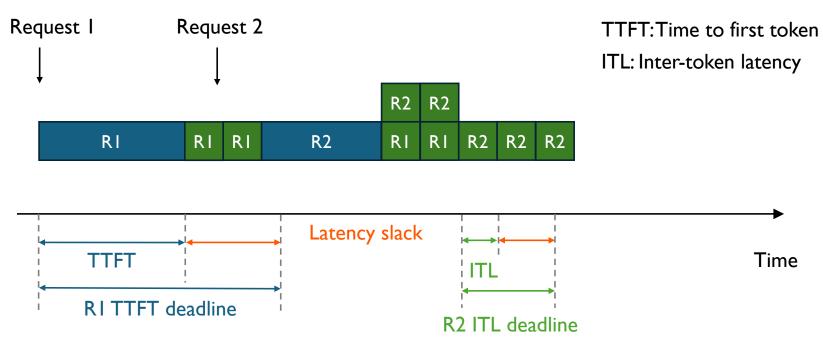
Model parallelism

GPU frequency

Time sensitive

Time insensitive

LLM Inference



Heterogeneous Request Behavior

What is DynamoLLM?

It's a dynamic energymanagement system designed
for large-scale LLM inference
clusters. It observes that
different inference requests have
vastly different compute and
energy characteristics.

Memory-bound

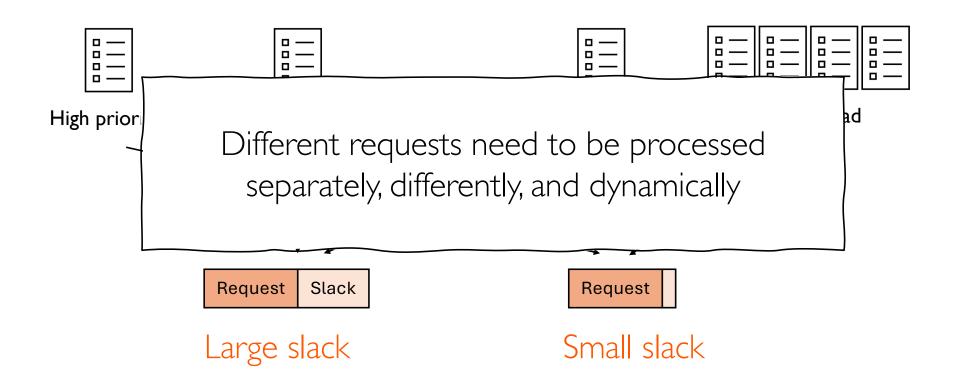
I have 5 apples. I gave 2 to my friend and then bought 4 more.

After that, I ate 3. How many apples do I have now?

4

Compute-bound

Heterogeneous Request Behavior



Hierarchical Control

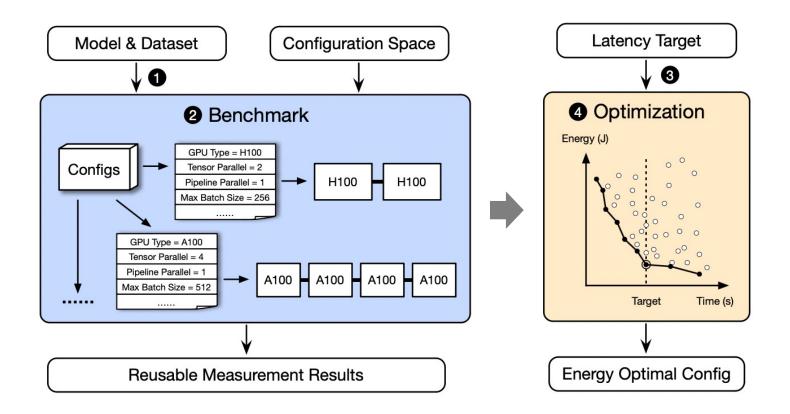
	Level	Decision	Time scale
Request length Request load Time-energy frontier	Cluster	Number of instances	Minutes
	Pool	Model parallelism	Minute
	Instance	GPU frequency	Seconds
		Up to 53% energy reduction while meeting latency deadlines	

The ML.ENERGY Benchmark: Toward Automated Inference Energy Measurement and Optimization

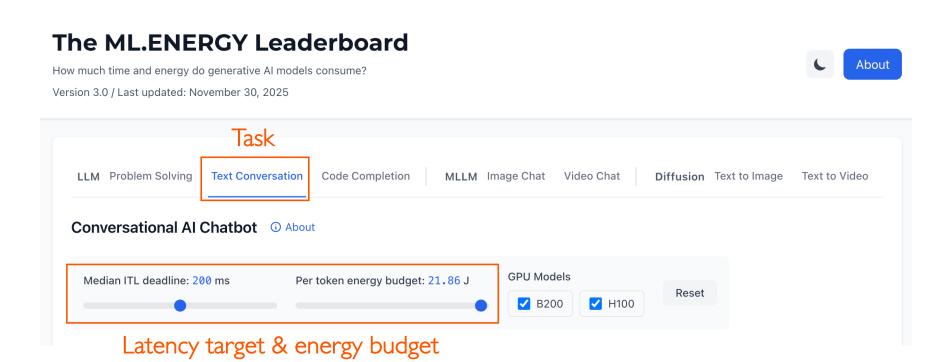
https://ml.energy/leaderboard/

Jae-Won Chung, Jeff J. Ma, Ruofan Wu, Jiachen Liu, Oh Jun Kweon, Yuxuan Xia, Zhiyu Wu, Mosharaf Chowdhury "What are the energy implications of the choices we make?"

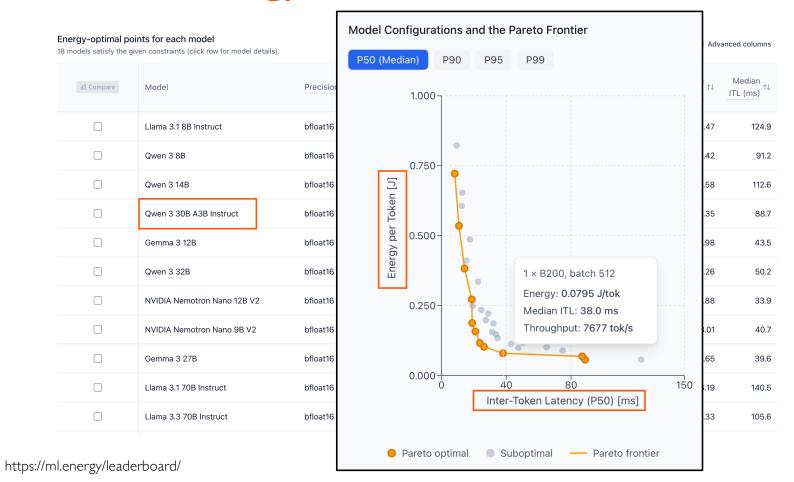
Automated Optimization Recommendation



The ML.ENERGY Leaderboard



Time vs. Energy Trade-off



Zeus: Understanding and Optimizing GPU Energy Consumption of DNN Training

Jie You*, Jae-Won Chung*, and Mosharaf Chowdhury

"How does energy interact with time?"

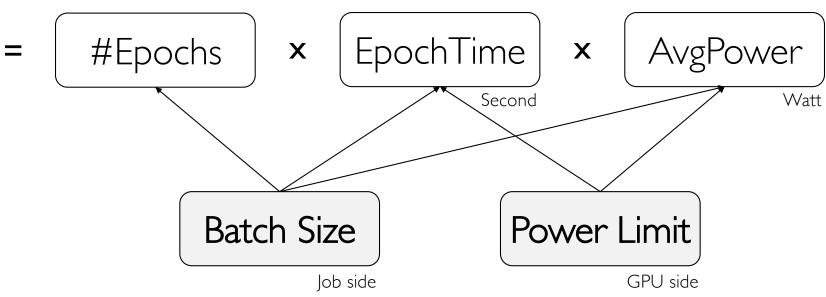
Understanding GPU Energy Consumption

Energy to Accuracy (ETA)

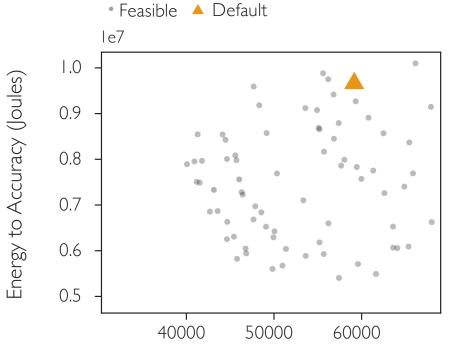
- Energy needed to reach the user-specified target accuracy
- Energy-counterpart of Time to Accuracy (TTA)

Understanding GPU Energy Consumption

Understanding GPU Energy Consumption



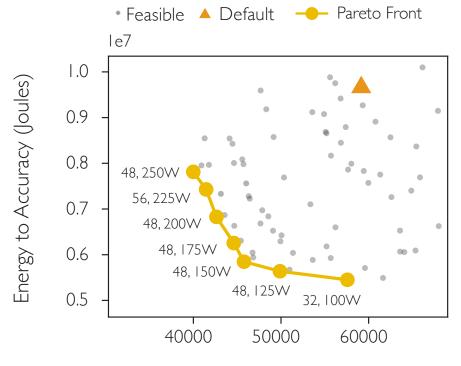
Opportunity for Energy Savings



Training time and total energy affected by batch size and GPU power limit

Time to Accuracy (Seconds)

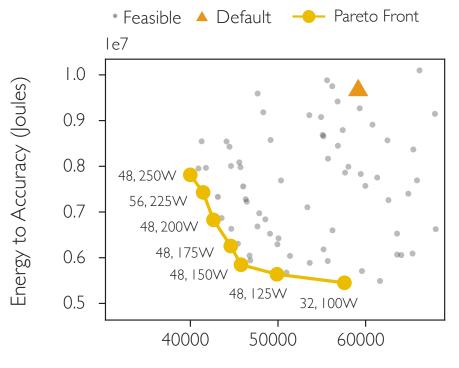
Time vs. Energy Trade-off



Training time and total energy affected by batch size and GPU power limit

Time to Accuracy (Seconds)

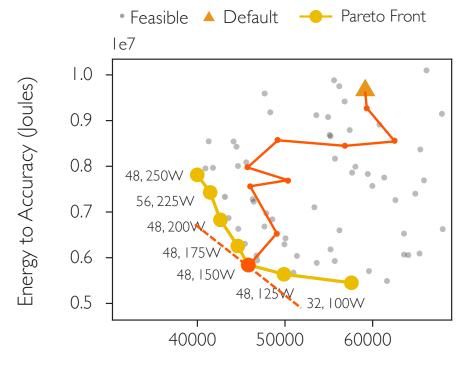
Time vs. Energy Trade-off



Which yellow point is the best?

Time to Accuracy (Seconds)

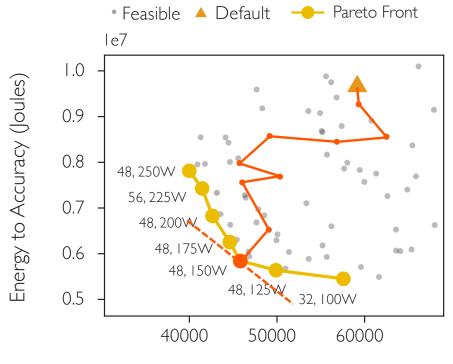
Multi-Armed Bandit Algorithm



Time to Accuracy (Seconds)

- Objective
 - = Linear combination of time & energy
- Arm = Batch size
- Horizon = Recurring training
- Thompson sampling

Multi-Armed Bandit Algorithm

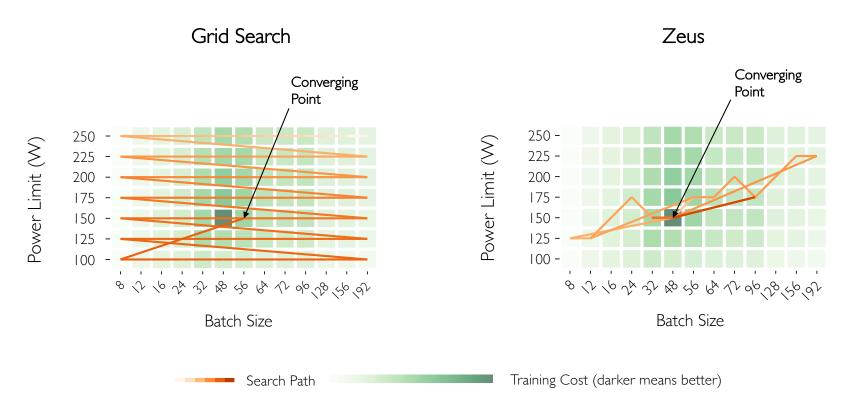


Time to Accuracy (Seconds)

15% to 76% energy reduction

across diverse models and multiple GPU generations

Zeus in Action

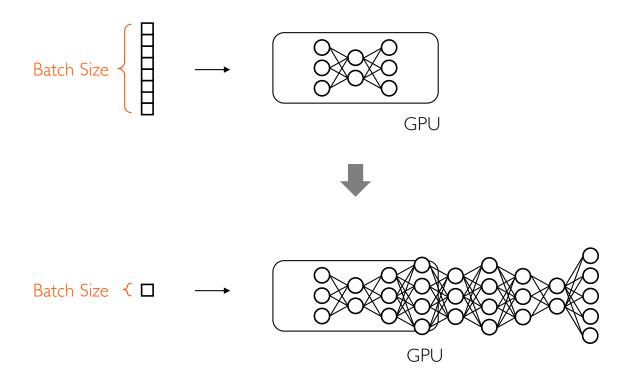


DeepSpeech2 trained on LibriSpeech on an NVIDIA VI00 GPU.

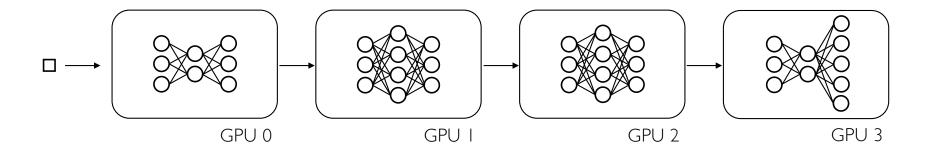
Reducing Energy Bloat in Large Model Training

Jae-Won Chung, Yile Gu, Insu Jang, Luoxi Meng, Nikhil Bansal, Mosharaf Chowdhury "Any way to reduce energy consumption without slowdown?"

Explosive Growth in Model Size



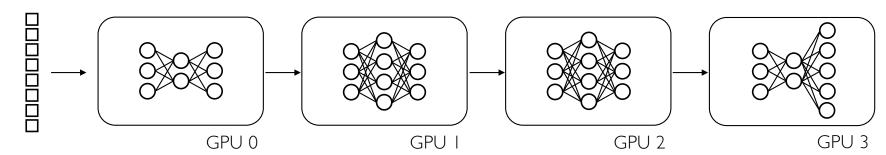
Model Parallelism



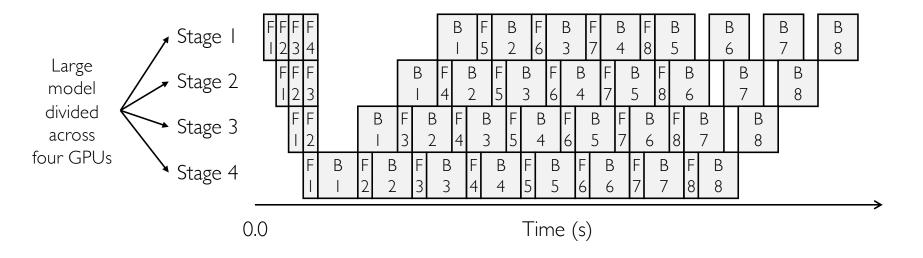
Model Parallelism

Pipeline Parallel training

8 microbatches

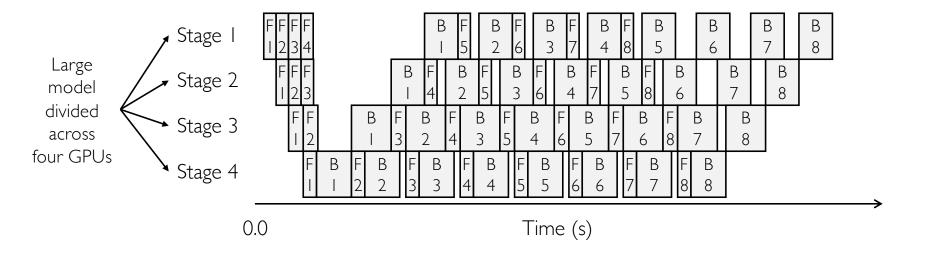


Pipeline Parallel Training



One training iteration with 4 pipeline stages and 8 microbatches (IFIB schedule).

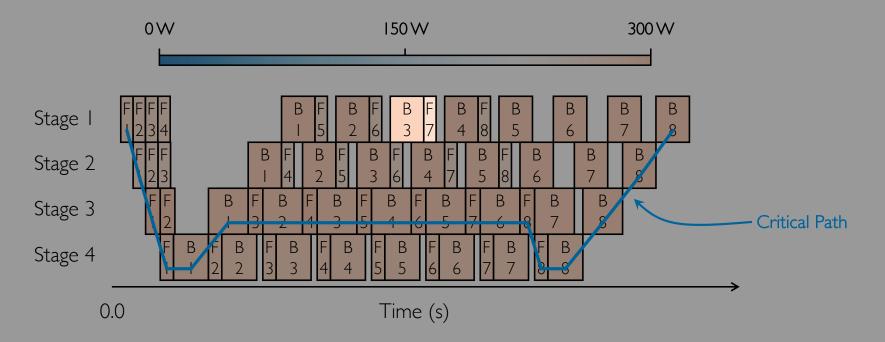
Fundamental Computation Imbalance



One training iteration with 4 pipeline stages and 8 microbatches (IFIB schedule).

Drawn to scale for GPT-3 I.3B on NVIDIA A100 GPUs.

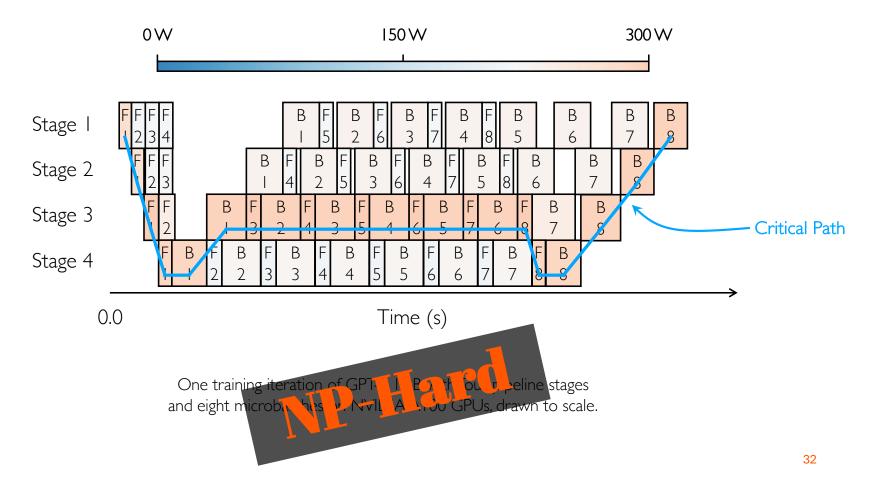
Where Do the Joules Go?



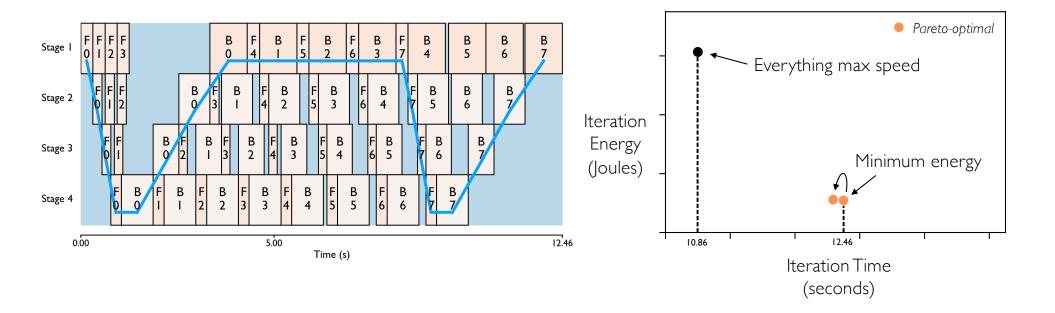
One training iteration with 4 pipeline stages and 8 microbatches (IFIB schedule).

Drawn to scale for GPT-3 1.3B on NVIDIA A100 GPUs.

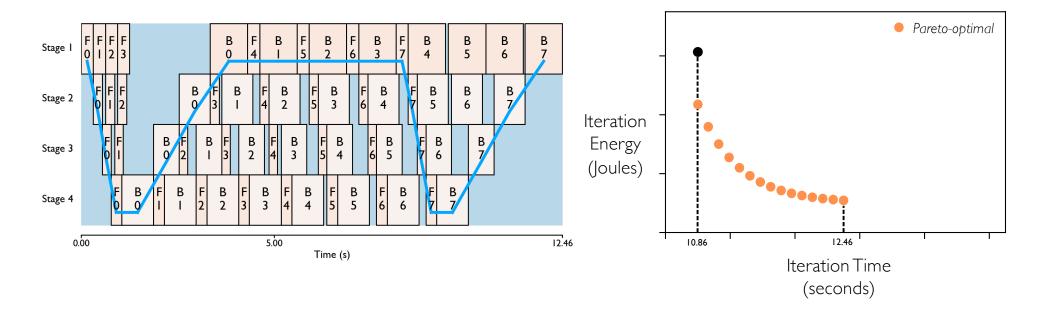
Cutting 30% Energy Bloat



Time vs. Energy Trade-off



Time vs. Energy Trade-off



Summary: Decisions Across the Al Stack

ML Algorithm

MHA vs. GQA Sparse vs. Dense VideoGen

Framework

Model parallelism
Batch size for serving
PD disaggregation etc.
Execution scheduling

ML Job

Batch size for training Input/Output length Image resolution

Cluster

Number of instances GPU type

Jointly influence energy and time

Hardware (GPU)

Frequency scaling Power capping

Summary

- Optimize energy along the time—energy trade-off frontier.
- Leverage available latency slack for energy savings.

